Mapping analytic sets onto cubes by little Lipschitz functions

被引:6
作者
Maly, Jan [1 ]
Zindulka, Ondrej [2 ]
机构
[1] Univ JE Purkyne, Fac Sci, Dept Math, Ceske Mladeze 8, Usti Nad Labem 40096, Czech Republic
[2] Czech Tech Univ, Fac Civil Engn, Dept Math, Thakurova 7, Prague 16000 6, Czech Republic
关键词
Packing measure; Packing dimension; Little Lipschitz map; Lower Lipschitz map; Analytic set;
D O I
10.1007/s40879-018-0288-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A mapping f : X -> Y between metric spaces is called little Lipschitz if the lip f(x) = lim inf (r -> 0) diam f(B(x, r)/r is finite for every x is an element of X. We prove that if a compact ( or, more generally, analytic) metric space has packing dimension greater than n, then it can be mapped onto an n- dimensional cube by a little Lipschitz function. The result requires two facts that are interesting in their own right. First, an analytic metric space X contains, for any epsilon > 0, a compact subset S that embeds into an ultrametric space by a Lipschitz map, and dimP S >= dimP X - epsilon. Second, a little Lipschitz function on a closed subset admits a little Lipschitz extension.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 2003, FRACTAL GEOMETRY, DOI DOI 10.1002/0470013850
[2]   Scaled-oscillation and regularity [J].
Balogh, Zoltan M. ;
Csoernyei, Marianna .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (09) :2667-2675
[3]   ADDITIVITY OF MEASURE IMPLIES ADDITIVITY OF CATEGORY [J].
BARTOSZYNSKI, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 281 (01) :209-213
[4]  
Bartoszyski T., 1995, Set theory
[5]  
Buczolich Z., 2017, STUDIA MATH
[6]  
Edgar G.A., 2000, Real Anal. Exchange, V26, P831
[7]  
Edgar G.A., 2007, N.Y. J. Math., V13, P33
[8]  
Engelking R., 1989, General Topology
[9]  
Fremlin D. H., 2015, Measure Theory, Volume 5: Set-Theoretic Measure Theory, Part I
[10]  
Hanson B. H., DIMENSION INEQ UNPUB