Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor

被引:1078
作者
Cushing, Scott K. [1 ,2 ]
Li, Jiangtian [1 ]
Meng, Fanke [1 ]
Senty, Tess R. [2 ]
Suri, Savan [1 ]
Zhi, Mingjia [1 ]
Li, Ming [1 ]
Bristow, Alan D. [2 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
基金
美国国家科学基金会;
关键词
VISIBLE-LIGHT; SOLAR-CELLS; SILVER NANOSTRUCTURES; DIPOLE APPROXIMATION; TITANIUM-DIOXIDE; CHARGE-CARRIERS; PARTICLE-SIZE; NANOPARTICLES; GOLD; SURFACE;
D O I
10.1021/ja305603t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal nanostructures have been incorporated into semiconductors to enhance the solar-light harvesting and the energy-conversion efficiency. So far the mechanism of energy transfer from the plasmonic metal to semiconductors remains unclear. Herein the underlying plasmonic energy-transfer mechanism is unambiguously determined in Au@SiO2@Cu2O sandwich nanostructures by transient-absorption and photocatalysis action spectrum measurement. The gold core converts the energy of incident photons into localized surface plasmon resonance oscillations and transfers the plasmonic energy to the Cu2O semiconductor shell via resonant energy transfer (RET). RET generates electron hole pairs in the semiconductor by the dipole dipole interaction between the plasmonic metal (donor) and semiconductor (acceptor), which greatly enhances the visible-light photocatalytic activity as compared to the semiconductor alone. RET from a plasmonic metal to a semiconductor is a viable and efficient mechanism that can be used to guide the design of photocatalysts, photovoltaics, and other optoelectronic devices.
引用
收藏
页码:15033 / 15041
页数:9
相关论文
共 50 条
[31]   MOFs Conferred with Transient Metal Centers for Enhanced Photocatalytic Activity [J].
Chen, Xiaolang ;
Xiao, Shuning ;
Wang, Hao ;
Wang, Wenchao ;
Cai, Yong ;
Li, Guisheng ;
Qiao, Minghua ;
Zhu, Jian ;
Li, Hexing ;
Zhang, Dieqing ;
Lu, Yunfeng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (39) :17182-17186
[32]   Enhanced stability of plasmonic metal thin films by CVD grown graphene transfer [J].
Del Rosso, T. ;
Zaman, Q. ;
Romani, E. C. ;
Pandoli, O. ;
Aucelio, R. Q. ;
Melo de Lima, L. ;
Cremona, M. ;
Dmitriev, V. ;
Queiroz da Costa, K. ;
Lazaro Freire, F., Jr. ;
Maia da Costa, M. E. H. .
THIN SOLID FILMS, 2017, 644 :65-70
[33]   Plasmonic Enhanced Photocatalytic Activity of Ag Nanospheres Decorated BiFeO3 Nanoparticles [J].
Alexandr Navjot ;
Gurmeet Singh Tovstolytkin .
Catalysis Letters, 2017, 147 :1640-1645
[34]   Theoretical maximum efficiency of solar energy conversion in plasmonic metal-semiconductor heterojunctions [J].
Cushing, Scott K. ;
Bristow, Alan D. ;
Wu, Nianqiang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (44) :30013-30022
[35]   Plasmonic Metal/Semiconductor Heterostructure for Visible Light-Enhanced H2 Production [J].
Khanam, Shomaila ;
Rout, Sanjeeb Kumar .
ACS OMEGA, 2022, 7 (29) :25466-25475
[36]   Resonant energy transfer between plasmonic silver and biomolecule for colour tuning and white light emission [J].
John, Jancy ;
Abraham, Rani ;
Jayakrishnan, R. ;
Thomas, Vinoy .
JCIS OPEN, 2022, 8
[37]   Resonant energy transfer and light scattering enhancement of plasmonic random lasers embedded with silver nanoplates [J].
Hsiao, Jia-Huei ;
Chen, Shih-Wen ;
Hung, Bing-Yi ;
Uma, Kasimayan ;
Chen, Wei-Cheng ;
Kuo, Chi-Ching ;
Lin, Ja-Hon .
RSC ADVANCES, 2020, 10 (13) :7551-7558
[38]   Establishing a new hot electrons transfer channel by ion doping in a plasmonic metal/semiconductor photocatalyst [J].
Wang, Zhiyu ;
Xue, Jiawei ;
Pan, Haibin ;
Wu, Lihui ;
Dong, Jingjing ;
Cao, Heng ;
Sun, Song ;
Gao, Chen ;
Zhu, Xiaodi ;
Bao, Jun .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (28) :15795-15798
[39]   Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laserexcited nanoparticle [J].
Dagallier, Adrien ;
Boulais, Etienne ;
Boutopoulos, Christos ;
Lachaine, Remi ;
Meunier, Michel .
NANOSCALE, 2017, 9 (09) :3023-3032
[40]   Switching the Charge Transfer Competition into Cooperative Utilization in Simultaneously Excited Plasmonic Metal and Semiconductor Systems [J].
Zhan, Ruoning ;
Yu, Changqiang ;
Huang, Zhaohui ;
Xie, Guanshun ;
Zhang, Senlin ;
Xie, Xiuqiang ;
Zhang, Nan .
ADVANCED FUNCTIONAL MATERIALS, 2025,