Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor

被引:1078
作者
Cushing, Scott K. [1 ,2 ]
Li, Jiangtian [1 ]
Meng, Fanke [1 ]
Senty, Tess R. [2 ]
Suri, Savan [1 ]
Zhi, Mingjia [1 ]
Li, Ming [1 ]
Bristow, Alan D. [2 ]
Wu, Nianqiang [1 ]
机构
[1] W Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] W Virginia Univ, Dept Phys, Morgantown, WV 26506 USA
基金
美国国家科学基金会;
关键词
VISIBLE-LIGHT; SOLAR-CELLS; SILVER NANOSTRUCTURES; DIPOLE APPROXIMATION; TITANIUM-DIOXIDE; CHARGE-CARRIERS; PARTICLE-SIZE; NANOPARTICLES; GOLD; SURFACE;
D O I
10.1021/ja305603t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic metal nanostructures have been incorporated into semiconductors to enhance the solar-light harvesting and the energy-conversion efficiency. So far the mechanism of energy transfer from the plasmonic metal to semiconductors remains unclear. Herein the underlying plasmonic energy-transfer mechanism is unambiguously determined in Au@SiO2@Cu2O sandwich nanostructures by transient-absorption and photocatalysis action spectrum measurement. The gold core converts the energy of incident photons into localized surface plasmon resonance oscillations and transfers the plasmonic energy to the Cu2O semiconductor shell via resonant energy transfer (RET). RET generates electron hole pairs in the semiconductor by the dipole dipole interaction between the plasmonic metal (donor) and semiconductor (acceptor), which greatly enhances the visible-light photocatalytic activity as compared to the semiconductor alone. RET from a plasmonic metal to a semiconductor is a viable and efficient mechanism that can be used to guide the design of photocatalysts, photovoltaics, and other optoelectronic devices.
引用
收藏
页码:15033 / 15041
页数:9
相关论文
共 56 条
[1]   Following Charge Separation on the Nanoscale in Cu2O-Au Nanoframe Hollow Nanoparticles [J].
A. Mahmoud, Mahmoud ;
Qian, Wei ;
El-Sayed, Mostafa A. .
NANO LETTERS, 2011, 11 (08) :3285-3289
[2]   A UNIFIED THEORY OF RADIATIVE AND RADIATIONLESS MOLECULAR-ENERGY TRANSFER [J].
ANDREWS, DL .
CHEMICAL PHYSICS, 1989, 135 (02) :195-201
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[5]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[6]   Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles [J].
Brown, Michael D. ;
Suteewong, Teeraporn ;
Kumar, R. Sai Santosh ;
D'Innocenzo, Valerio ;
Petrozza, Annamaria ;
Lee, Michael M. ;
Wiesner, Ulrich ;
Snaith, Henry J. .
NANO LETTERS, 2011, 11 (02) :438-445
[7]   Plasmonic solar cells [J].
Catchpole, K.R. ;
Polman, A. .
Optics Express, 2008, 16 (26) :21793-21800
[8]  
Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
[9]   Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons [J].
Christopher, Phillip ;
Ingram, David B. ;
Linic, Suljo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9173-9177
[10]   DISCRETE-DIPOLE APPROXIMATION FOR SCATTERING CALCULATIONS [J].
DRAINE, BT ;
FLATAU, PJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (04) :1491-1499