Evolutionary Tuning of Optimal PID Controllers for Second Order Systems Plus Time Delay

被引:2
作者
Hernandez-Riveros, Jesus-Antonio [1 ]
Urrea-Quintero, Jorge-Humberto [1 ]
Carmona-Cadavid, Cindy-Vanessa [1 ]
机构
[1] Univ Nacl Colombia Sede Medellin, Fac Minas, Medellin, Colombia
来源
COMPUTATIONAL INTELLIGENCE, IJCCI 2014 | 2016年 / 620卷
关键词
PID tuning; Evolutionary computation; Heuristic algorithm; Integral performance criterion; Multidynamics optimization; MAGO; DESIGN;
D O I
10.1007/978-3-319-26393-9_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
PID stands for "proportional, integral, derivative'' The PID controller is the most widely used industrial device for monitoring and controlling processes. Those three elements are the basics of a PID Controller. Each one performs a different task and has a different effect on the functioning of a system. The expected behavior of a system depends of the setting of those parameters. There are alternatives to the traditional rules of PID tuning, but there is not yet a study showing that the use of heuristic algorithms it is indeed better than using classic methods of optimal tuning. This is developed in this paper. An evolutionary algorithm MAGO (Multidynamics Algorithm for Global Optimization) is used to optimize the controller parameters minimizing the ITAE performance index. The procedure is applied to a set of benchmark problems modeled as Second Order Systems Plus Time Delay (SOSPD) plants. The evolutionary approach gets a better overall performance comparing to traditional methods (Bohl and McAvoy, ITAE-Hassan, ITAE-Sung), regardless the plant used and its operating mode (servo or regulator), covering all restrictions of the traditional methods and extending the maximum and minimum boundaries between them.
引用
收藏
页码:3 / 20
页数:18
相关论文
共 32 条
[11]  
Hassan G. A., 1993, Control and Computers, V21, P1
[12]  
Hemandez-Riveros J., 2013, WIT T MODEL SIM, V55
[13]   A multi dynamics algorithm for global optimization [J].
Hernandez, J. A. ;
Ospina, J. D. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (7-8) :1271-1278
[14]  
Hernández-Riveros JA, 2012, LECT NOTES ARTIF INT, V7637, P271, DOI 10.1007/978-3-642-34654-5_28
[15]   Design of PID-type controllers using multiobjective genetic algorithms [J].
Herreros, A ;
Baeyens, E ;
Perán, JR .
ISA TRANSACTIONS, 2002, 41 (04) :457-472
[16]   Evolutionary algorithms based design of multivariable PID controller [J].
Iruthayarajan, M. Willjuice ;
Baskar, S. .
EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (05) :9159-9167
[17]  
Lagunas J., 2004, THESIS
[18]  
Li JL, 2011, CHIN CONT DECIS CONF, P416, DOI 10.1109/CCDC.2011.5968215
[19]   Optimal-tuning PID control for industrial systems [J].
Liu, GP ;
Daley, S .
CONTROL ENGINEERING PRACTICE, 2001, 9 (11) :1185-1194
[20]   Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system [J].
Michail, K. ;
Zolotas, A. C. ;
Goodall, R. M. ;
Whidborne, J. F. .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (10) :1785-1804