Shallow flow past a cavity: Coupling with a standing gravity wave

被引:19
作者
Wolfinger, M. [1 ]
Ozen, C. A. [1 ]
Rockwell, D. [1 ]
机构
[1] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
LINEAR-STABILITY ANALYSIS; PLANE TURBULENT JETS; COMPOUND; CHANNEL; WAKES; MODEL;
D O I
10.1063/1.4761829
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Shallow, fully turbulent inflow past a cavity can give rise to highly organized oscillations, due to coupling between: (i) the inherent instability of the separated turbulent layer along the opening of the cavity, and (ii) a gravity standing wave within the cavity. Techniques of particle image velocimetry and pressure measurements are employed to characterize the occurrence of the fully coupled state of the oscillation, relative to its uncoupled state. At a threshold value of inflow velocity, the frequency of the inherent instability of the turbulent separated shear layer locks-on to the frequency of the gravity standing wave. Moreover, the amplitude of the spectral peak of the pressure fluctuation, both at the impingement corner of the cavity and within the cavity, attains maximum values when lock-on occurs. Occurrence of a fully coupled or locked-on state substantially alters the time-averaged flow structure. Enhanced magnitudes of patterns of Reynolds stress and transverse velocity fluctuation occur along the cavity shear layer. Simultaneously, increased flow from within the cavity towards the separated shear layer occurs at a location immediately downstream of separation at the leading-edge of the cavity and, correspondingly, increased flow into the cavity occurs in the impingement region. The influence of the locked-on state is therefore global: both the separated shear layer along the mouth of the cavity and the flow within the cavity are substantially altered. Phase-averaged representations of the flow structure show highly coherent, phase-locked patterns of vorticity along the cavity opening during the locked-on state. These vorticity patterns are associated with large, phase-locked excursions of the transverse component of velocity, within both the separated the shear layer and the cavity. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4761829]
引用
收藏
页数:16
相关论文
共 27 条
[1]   Can the dynamics of shallow wakes be reproduced from a single time-averaged profile? [J].
Chan, FC ;
Ghidaoui, MS ;
Kolyshkin, AA .
PHYSICS OF FLUIDS, 2006, 18 (04)
[2]  
Chen DY, 1998, J HYDRAUL RES, V36, P815
[3]   Absolute and convective instabilities of plane turbulent wakes in a shallow water layer [J].
Chen, DY ;
Jirka, GH .
JOURNAL OF FLUID MECHANICS, 1997, 338 :157-172
[4]   EXPERIMENTAL-STUDY OF PLANE TURBULENT WAKES IN A SHALLOW-WATER LAYER [J].
CHEN, DY ;
JIRKA, GH .
FLUID DYNAMICS RESEARCH, 1995, 16 (01) :11-41
[5]  
Chen F., 1996, Annual Journal of Hydraulic Engineering - JSCE, V40, P777
[6]   CONFINEMENT AND BED-FRICTION EFFECTS IN SHALLOW TURBULENT MIXING LAYERS [J].
CHU, VH ;
BABARUTSI, S .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1988, 114 (10) :1257-1274
[7]   STABILITY OF TRANSVERSE-SHEAR FLOWS IN SHALLOW OPEN CHANNELS [J].
CHU, VH ;
WU, JH ;
KHAYAT, RE .
JOURNAL OF HYDRAULIC ENGINEERING, 1991, 117 (10) :1370-1388
[8]   PLANE TURBULENT JETS IN A BOUNDED FLUID LAYER [J].
DRACOS, T ;
GIGER, M ;
JIRKA, GH .
JOURNAL OF FLUID MECHANICS, 1992, 241 :587-614
[9]   Oscillation of shallow flow past a cavity: Resonant coupling with a, gravity wave [J].
Ekmekci, A. ;
Rockwell, D. .
JOURNAL OF FLUIDS AND STRUCTURES, 2007, 23 (06) :809-838
[10]   Linear and nonlinear analysis of shallow wakes [J].
Ghidaoui, MS ;
Kolyshkin, AA ;
Liang, JH ;
Chan, FC ;
Li, Q ;
Xu, K .
JOURNAL OF FLUID MECHANICS, 2006, 548 :309-340