Metabolite Profiling of Arabidopsis Inoculated with Alternaria brassicicola Reveals That Ascorbate Reduces Disease Severity

被引:50
作者
Botanga, Christopher J. [1 ,2 ,3 ]
Bethke, Gent [1 ,2 ]
Chen, Zhong [4 ]
Gallie, Daniel R. [4 ]
Fiehn, Oliver [5 ]
Glazebrook, Jane [1 ,2 ]
机构
[1] Univ Minnesota, Dept Plant Biol & Microbial, St Paul, MN 55108 USA
[2] Univ Minnesota, Plant Genom Inst, St Paul, MN 55108 USA
[3] Chicago State Univ, Dept Biol Sci, Chicago, IL 60628 USA
[4] Univ Calif Riverside, Dept Biochem, Riverside, CA 92521 USA
[5] Univ Calif Davis, Genome Ctr, Davis, CA 95616 USA
基金
美国国家科学基金会; 美国能源部;
关键词
L-GALACTOSE PHOSPHORYLASE; MANNITOL DEHYDROGENASE; TREHALOSE METABOLISM; HORMONE CROSSTALK; HYDROGEN-PEROXIDE; RESPONSE PATHWAYS; DEFENSE-RESPONSE; ACID DEFICIENCY; SALICYLIC-ACID; CELL-DEATH;
D O I
10.1094/MPMI-07-12-0179-R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The interaction between the pathogenic ascomycete Alternaria brassicicola and Arabidopsis was investigated by metabolite profiling. The effect of A. brassicicola challenge on metabolite levels was substantial, with nearly 50% of detected compounds undergoing significant changes. Mutations blocking ethylene, jasmonic acid, or ethylene signaling had little effect on metabolite levels. The effects of altering levels of some metabolites were tested by exogenous application during A. brassicicola inoculation. Gamma amino-butyric acid (GABA) or xylitol promoted, while trehalose and ascorbate inhibited, disease severity. GABA promoted, and ascorbate strongly inhibited, fungal growth in culture. Arabidopsis vtc1 and vtc2 mutants, that have low levels of ascorbate, were more susceptible to A. brassicicola. Ascorbate levels declined following A. brassicicola inoculation while levels of dehydroascorbate increased, resulting in a shift of the redox balance between these compounds in the direction of oxidation. These results demonstrate that ascorbate is an important component of resistance to this pathogen.
引用
收藏
页码:1628 / 1638
页数:11
相关论文
共 65 条
[1]   EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis [J].
Alonso, JM ;
Hirayama, T ;
Roman, G ;
Nourizadeh, S ;
Ecker, JR .
SCIENCE, 1999, 284 (5423) :2148-2152
[2]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[3]   The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1 [J].
Barth, C ;
Moeder, W ;
Klessig, DF ;
Conklin, PL .
PLANT PHYSIOLOGY, 2004, 134 (04) :1784-1792
[4]   Arabidopsis Histone Methyltransferase SET DOMAIN GROUP8 Mediates Induction of the Jasmonate/Ethylene Pathway Genes in Plant Defense Response to Necrotrophic Fungi [J].
Berr, Alexandre ;
McCallum, Emily J. ;
Alioua, Abdelmalek ;
Heintz, Dimitri ;
Heitz, Thierry ;
Shen, Wen-Hui .
PLANT PHYSIOLOGY, 2010, 154 (03) :1403-1414
[5]   The Multifunctional Enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) Converts Cysteine-Indole-3-Acetonitrile to Camalexin in the Indole-3-Acetonitrile Metabolic Network of Arabidopsis thaliana [J].
Boettcher, Christoph ;
Westphal, Lore ;
Schmotz, Constanze ;
Prade, Elke ;
Scheel, Dierk ;
Glawischnig, Erich .
PLANT CELL, 2009, 21 (06) :1830-1845
[6]   The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis [J].
Bouché, N ;
Fait, A ;
Zik, M ;
Fromm, H .
PLANT MOLECULAR BIOLOGY, 2004, 55 (03) :315-325
[7]   Increasing vitamin C content of plants through enhanced ascorbate recycling [J].
Chen, Z ;
Young, TE ;
Ling, J ;
Chang, SC ;
Gallie, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (06) :3525-3530
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]   L-ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1 [J].
Conklin, PL ;
Pallanca, JE ;
Last, RL ;
Smirnoff, N .
PLANT PHYSIOLOGY, 1997, 115 (03) :1277-1285
[10]   Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis [J].
Conklin, PL ;
Norris, SR ;
Wheeler, GL ;
Williams, EH ;
Smirnoff, N ;
Last, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :4198-4203