Well-posedness for the Navier-Stokes equations with data in homogeneous Sobolev-Lorentz spaces

被引:5
作者
Khai, D. Q. [1 ]
Tri, N. M. [1 ]
机构
[1] VAST, Inst Math, 18 Hoang Quoc Viet, Hanoi 10307, Vietnam
关键词
Navier-Stokes equations; Existence and uniqueness of local and global mild solutions; Homogeneous Sobolev-Lorentz spaces; INITIAL-VALUE-PROBLEM; WEAK SOLUTIONS; MORREY SPACES; BESOV; LP; REGULARITY; SYSTEM;
D O I
10.1016/j.na.2016.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study local well-posedness for the Navier-Stokes equations (NSE) with arbitrary initial data in homogeneous Sobolev-Lorentz spaces (H) ovrt dot(Lq,r)(s) (R-d) := (-Delta)L--s/2(q,r) for d >= 2, q > 1, s >= 0, 1 <= r <= infinity, and d/q - 1 <= s < d/q. The obtained result improves the known ones for q > d,r = q, s = 0 (see Cannone (1995), Cannone and Meyer (1995)), for q = r = 2, d/2 - 1 < s < d/2 (see Cannone (1995), Chemin (1992)), and for s = 0, d < q < +infinity, 1 <= r <= + infinity (see Lemarie-Rieusset (2002)). In the case of critical indexes (s = d/q - 1), we prove global well-posedness for NSE provided the norm of the initial value is small enough. This result is also a generalization of the one in Cannone (1997) and Kozono and Yamazaki (1995) [27], Meyer (1999) [30] in which (q = r = d, s = 0) and (q = d, s = 0, r = +infinity), respectively. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:130 / 145
页数:16
相关论文
共 31 条
[1]  
[Anonymous], 2002, CRC RES NOTES MATH
[2]  
Cannone M, 1997, REV MAT IBEROAM, V13, P515
[3]  
Cannone M., 1995, Ondelettes, paraproduits et NavierStokes
[4]  
Cannone M., 1995, METHODS APPL ANAL, V2, P307
[5]  
Chemin J. Y., 2004, ACT JOURN MATH MEM J, P99
[6]   GLOBAL EXISTENCE FOR THE INCOMPRESSIBLE NAVIER-STOKES SYSTEM [J].
CHEMIN, JY .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (01) :20-28
[7]   On the hausdorff dimension of the singular set in time for weak solutions to the non-stationary navier–stokes equation on torus [J].
Khai D.Q. ;
Tri N.M. .
Vietnam Journal of Mathematics, 2015, 43 (2) :283-295
[8]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[9]   Besov Space Regularity Conditions for Weak Solutions of the Navier-Stokes Equations [J].
Farwig, Reinhard ;
Sohr, Hermann ;
Varnhorn, Werner .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (02) :307-320
[10]  
Friedlander S., 2004, HDB MATH FLUID DYNAM, V3