Kernel C-Means Clustering Algorithms for Hesitant Fuzzy Information in Decision Making

被引:18
|
作者
Li, Chaoqun [1 ]
Zhao, Hua [1 ]
Xu, Zeshui [1 ]
机构
[1] PLA Univ Sci & Technol, Inst Sci, Nanjing 210007, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Hesitant fuzzy set; Kernel function; Sample space; C-means; Clustering algorithm; SETS; DISTANCE;
D O I
10.1007/s40815-017-0304-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When facing clustering problems for hesitant fuzzy information, we normally solve them on sample space by using a certain hesitant fuzzy clustering algorithm, which is usually time-consuming or generates inaccurate clustering results. To overcome the issue, we propose a novel hesitant fuzzy clustering algorithm called hesitant fuzzy kernel C-means clustering (HFKCM) by means of kernel functions, which maps the data from the sample space to a high-dimensional feature space. As a result, the differences between different samples are expanded and thus make the clustering results much more accurate. By conducting simulation experiments on distributions of facilities and the twenty-first Century Maritime Silk Road, the results reveal the feasibility and availability of the proposed HFKCM algorithm.
引用
收藏
页码:141 / 154
页数:14
相关论文
共 50 条
  • [1] Kernel C-Means Clustering Algorithms for Hesitant Fuzzy Information in Decision Making
    Chaoqun Li
    Hua Zhao
    Zeshui Xu
    International Journal of Fuzzy Systems, 2018, 20 : 141 - 154
  • [2] Indefinite Kernel Fuzzy c-Means Clustering Algorithms
    Kanzawa, Yuchi
    Endo, Yasunori
    Miyamoto, Sadaaki
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI), 2010, 6408 : 116 - 128
  • [3] Optimizing kernel possibilistic fuzzy C-means clustering using metaheuristic algorithms
    Singh, Saumya
    Srivastava, Smriti
    EVOLVING SYSTEMS, 2024, 15 (04) : 1587 - 1606
  • [4] Fuzzy C-means clustering with hesitant fuzzy linguistic preference relation
    Zhou, Xueling
    Sun, Lei
    Wei, Cuiping
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11495 - 11514
  • [5] Intuitionistic fuzzy C-means clustering algorithms
    Zeshui Xu1
    2.Institute of Sciences
    3.Department of Information Systems
    JournalofSystemsEngineeringandElectronics, 2010, 21 (04) : 580 - 590
  • [6] Intuitionistic fuzzy C-means clustering algorithms
    Xu, Zeshui
    Wu, Junjie
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2010, 21 (04) : 580 - 590
  • [7] Gaussian-kernel c-means Clustering Algorithms
    Yang, Miin-Shen
    Chang-Chie, Shou-Jen
    Nataliani, Yessica
    THEORY AND PRACTICE OF NATURAL COMPUTING (TPNC 2018), 2018, 11324 : 124 - 135
  • [8] Gaussian-kernel c-means clustering algorithms
    Chang-Chien, Shou-Jen
    Nataliani, Yessica
    Yang, Miin-Shen
    SOFT COMPUTING, 2021, 25 (03) : 1699 - 1716
  • [9] Gaussian-kernel c-means clustering algorithms
    Shou-Jen Chang-Chien
    Yessica Nataliani
    Miin-Shen Yang
    Soft Computing, 2021, 25 : 1699 - 1716
  • [10] Kernel Possibilistic Fuzzy c-Means Clustering with Local Information for Image Segmentation
    Memon, Kashif Hussain
    Memon, Sufyan
    Qureshi, Muhammad Ali
    Alvi, Muhammad Bux
    Kumar, Dileep
    Shah, Rehan Ali
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (01) : 321 - 332