Automatic robust convex programming

被引:169
作者
Loefberg, Johan [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, Div Automat Control, SE-58183 Linkoping, Sweden
关键词
robust optimization; conic programming; modelling software; RELAXATIONS;
D O I
10.1080/10556788.2010.517532
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents the robust optimization framework in the modelling language YALMIP, which carries out robust modelling and uncertainty elimination automatically and allows the user to concentrate on the high-level model. While introducing the software package, a brief summary of robust optimization is given, as well as some comments on modelling and tractability of complex convex uncertain optimization problems.
引用
收藏
页码:115 / 129
页数:15
相关论文
共 25 条
[11]  
Garstka S. J., 1974, Mathematical Programming, V7, P117, DOI 10.1007/BF01585511
[12]  
Goh J., OPER RES IN PRESS
[13]   Graph implementations for nonsmooth convex programs [J].
Stanford University, United States .
Lect. Notes Control Inf. Sci., 2008, (95-110) :95-110
[14]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[15]  
Lasserre J. B., 2009, OPTIMIZATION SERIES
[16]  
Löfberg J, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P1438
[17]  
Lofberg J., 2008, P 17 IFAC WORLD C AU
[18]   Pre- and Post-Processing Sum-of-Squares Programs in Practice [J].
Lofberg, Johan .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (05) :1007-1011
[19]   A VARIABLE-COMPLEXITY NORM MAXIMIZATION PROBLEM [J].
MANGASARIAN, OL ;
SHIAU, TH .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (03) :455-461
[20]   Semidefinite programming relaxations for semialgebraic problems [J].
Parrilo, PA .
MATHEMATICAL PROGRAMMING, 2003, 96 (02) :293-320