ASYMPTOTIC BEHAVIOR FOR STOCHASTIC PLATE EQUATIONS WITH ROTATIONAL INERTIA AND KELVIN-VOIGT DISSIPATIVE TERM ON UNBOUNDED DOMAINS

被引:16
|
作者
Yao, Xiaobin [1 ]
Ma, Qiaozhen [1 ]
Liu, Tingting [1 ]
机构
[1] Northwest Normal Univ, Sch Math & Stat, Lanzhou 730070, Gansu, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2019年 / 24卷 / 04期
关键词
Attractors; plate equations; unbounded domains; upper semicontinu- ity; tail-estimates; DAMPED WAVE-EQUATION; GLOBAL ATTRACTOR; CRITICAL EXPONENT; EXISTENCE; DYNAMICS;
D O I
10.3934/dcdsb.2018247
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study asymptotic behavior of a class of stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term. First we introduce a continuous random dynamical system for the equation and establish the pullback asymptotic compactness of solutions. Second we consider the existence and upper semicontinuity of random attractors for the equation.
引用
收藏
页码:1889 / 1917
页数:29
相关论文
共 50 条