Degenerations of Zinbiel and nilpotent Leibniz algebras

被引:42
作者
Kaygorodov, Ivan [1 ]
Popov, Yury [2 ,3 ]
Pozhidaev, Alexandre [3 ,4 ]
Volkov, Yury [5 ]
机构
[1] Univ Fed ABC, CMCC, Santo Andre, Brazil
[2] Univ Estadual Campinas, IMECC, Campinas, SP, Brazil
[3] Novosibirsk State Univ, Dept Math & Mech, Novosibirsk, Russia
[4] Sobolev Inst Math, Novosibirsk, Russia
[5] St Petersburg State Univ, Dept Math & Mech, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Leibniz algebra; Zinbiel algebra; nilpotent algebra; degeneration; rigid algebra; 17D99; LIE-ALGEBRAS; DIMENSION LESS; CLASSIFICATION; VARIETIES;
D O I
10.1080/03081087.2017.1319457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe degenerations of four-dimensional Zinbiel and fourdimensional nilpotent Leibniz algebras over C. In particular, we describe all irreducible components in the corresponding varieties.
引用
收藏
页码:704 / 716
页数:13
相关论文
共 30 条
[1]   Naturally graded Zinbiel algebras with nilindex n-3 [J].
Adashev, J. Q. ;
Camacho, L. M. ;
Gomez-Vidal, S. ;
Karimjanov, I. A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 443 :86-104
[2]  
Adashev J.Q., 2010, J. Gen. Lie Theory Appl, V4, P1, DOI DOI 10.4303/JGLTA/S090601
[3]   Varieties of nilpotent complex Leibniz algebras of dimension less than five# [J].
Albeverio, S ;
Omirov, BA ;
Rakhimov, IS .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (05) :1575-1585
[4]  
Albeverio S., 2006, EXTRACTA MATH, V21, P197
[5]   An irreducible component of the variety of Leibniz algebras having trivial intersection with the variety of Lie algebras [J].
Ancochea Bermudez, J. M. ;
Campoamor-Stursberg, R. .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (11) :1450-1459
[6]   CLASSIFICATION OF ORBIT CLOSURES IN THE VARIETY OF THREE-DIMENSIONAL NOVIKOV ALGEBRAS [J].
Benes, Thomas ;
Burde, Dietrich .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (02)
[7]   Degenerations of pre-Lie algebras [J].
Benes, Thomas ;
Burde, Dietrich .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
[8]  
Bloh A., 1965, Dokl. Akad. Nauk SSSR, V165, P471
[9]   Degenerations of 7-dimensional nilpotent Lie algebras [J].
Burde, D .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (04) :1259-1277
[10]  
Burde D, 1999, J LIE THEORY, V9, P193