Graphene Electronics: Materials, Devices, and Circuits

被引:115
作者
Wu, Yanqing [1 ]
Farmer, Damon B. [1 ]
Xia, Fengnian [1 ]
Avouris, Phaedon [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
Current gain; field-effect transistor (FET); graphene analog integrated circuits (ICs); graphene nanoelectronics; power gain; voltage gain; HIGH-FREQUENCY; BERRYS PHASE; LARGE-AREA; TRANSISTORS; TRANSPORT; FILMS; RF; FABRICATION; GRAPHITE; GROWTH;
D O I
10.1109/JPROC.2013.2260311
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene is a 2-D atomic layer of carbon atoms with unique electronic transport properties such as a high Fermi velocity, an outstanding carrier mobility, and a high carrier saturation velocity, which make graphene an excellent candidate for advanced applications in future electronics. In particular, the potential of graphene in high-speed analog electronics is currently being extensively explored. In this paper, we discuss briefly the basic electronic structure and transport properties of graphene, its large scale synthesis, the role of metal-graphene contact, field-effect transistor (FET) device fabrication (including the issues of gate insulators), and then focus on the electrical characteristics and promise of high-frequency graphene transistors with record-high cutoff frequencies, maximum oscillation frequencies, and voltage gain. Finally, we briefly discuss the first graphene integrated circuits (ICs) in the form of mixers and voltage amplifiers.
引用
收藏
页码:1620 / 1637
页数:18
相关论文
共 91 条
[1]   Berry's phase and absence of back scattering in carbon nanotubes [J].
Ando, T ;
Nakanishi, T ;
Saito, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (08) :2857-2862
[2]  
[Anonymous], 2004, COMMUNICATIONS ENG
[3]  
[Anonymous], 2010, INT ELECT DEVICES M, DOI DOI 10.1109/IEDM.2010.5703422
[4]   Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations [J].
Antoniadis, D. A. ;
Aberg, I. ;
Ni Chleirigh, C. ;
Nayfeh, O. M. ;
Khakifirooz, A. ;
Hoyt, J. L. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (4-5) :363-376
[5]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[6]   Self-Aligned Fabrication of Graphene RF Transistors with T-Shaped Gate [J].
Badmaev, Alexander ;
Che, Yuchi ;
Li, Zhen ;
Wang, Chuan ;
Zhou, Chongwu .
ACS NANO, 2012, 6 (04) :3371-3376
[7]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[8]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[9]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[10]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355