Global Regularity for Some Oldroyd-B Type Models

被引:79
作者
Elgindi, Tarek M. [1 ]
Rousset, Frederic [2 ]
机构
[1] Courant Inst, New York, NY USA
[2] IRMAR, Rennes, France
基金
美国国家科学基金会;
关键词
EULER-BOUSSINESQ SYSTEM; WELL-POSEDNESS; VISCOELASTIC FLUIDS; BESOV-SPACES; EQUATIONS; HYDRODYNAMICS; VISCOSITY; FLOWS;
D O I
10.1002/cpa.21563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate some critical models for visco-elastic flows of Oldroyd-B type in dimension 2. We use a transformation that exploits the Oldroyd-B structure to prove an L-infinity bound on the vorticity which allows us to prove global regularity for our systems. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:2005 / 2021
页数:17
相关论文
共 22 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P429, DOI 10.1007/978-3-642-16830-7_10
[2]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[3]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[4]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[5]   Note on Global Regularity for Two-Dimensional Oldroyd-B Fluids with Diffusive Stress [J].
Constantin, Peter ;
Kliegl, Markus .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) :725-740
[6]   Global Well-Posedness Issues for the Inviscid Boussinesq System with Yudovich's Type Data [J].
Danchin, Raphael ;
Paicu, Marius .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (01) :1-14
[7]   CONCENTRATIONS IN REGULARIZATIONS FOR 2-D INCOMPRESSIBLE-FLOW [J].
DIPERNA, RJ ;
MAJDA, AJ .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (03) :301-345
[8]  
Elgindi T. M., 2014, PREPRINT
[9]   Global Well-Posedness for Euler-Boussinesq System with Critical Dissipation [J].
Hmidi, T. ;
Keraani, S. ;
Rousset, F. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :420-445
[10]   Incompressible viscous flows in borderline Besov spaces [J].
Hmidi, Taoufik ;
Keraani, Sahbi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 189 (02) :283-300