Scrambling in random unitary circuits: Exact results
被引:81
作者:
Bertini, Bruno
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
Bertini, Bruno
[1
]
Piroli, Lorenzo
论文数: 0引用数: 0
h-index: 0
机构:
Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, GermanyUniv Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
Piroli, Lorenzo
[2
,3
]
机构:
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
We study the scrambling of quantum information in local random unitary circuits by focusing on the tripartite information proposed by Hosur et al. We provide exact results for the averaged Renyi-2 tripartite information in two cases: (i) the local gates are Haar random and (ii) the local gates are dual-unitary and randomly sampled from a single-site Haar-invariant measure. We show that the latter case defines a one-parameter family of circuits, and prove that for a "maximally chaotic" subset of this family quantum information is scrambled faster than in the Haar-random case. Our approach is based on a standard mapping onto an averaged folded tensor network, that can be studied by means of appropriate recurrence relations. By means of the same method, we also revisit the computation of out-of-time-ordered correlation functions, rederiving known formulas for Haar-random unitary circuits, and presenting an exact result for maximally chaotic random dual-unitary gates.