Scrambling in random unitary circuits: Exact results

被引:81
作者
Bertini, Bruno [1 ]
Piroli, Lorenzo [2 ,3 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, Schellingstr 4, D-80799 Munich, Germany
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
QUANTUM; CHAOS; WALKS;
D O I
10.1103/PhysRevB.102.064305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the scrambling of quantum information in local random unitary circuits by focusing on the tripartite information proposed by Hosur et al. We provide exact results for the averaged Renyi-2 tripartite information in two cases: (i) the local gates are Haar random and (ii) the local gates are dual-unitary and randomly sampled from a single-site Haar-invariant measure. We show that the latter case defines a one-parameter family of circuits, and prove that for a "maximally chaotic" subset of this family quantum information is scrambled faster than in the Haar-random case. Our approach is based on a standard mapping onto an averaged folded tensor network, that can be studied by means of appropriate recurrence relations. By means of the same method, we also revisit the computation of out-of-time-ordered correlation functions, rederiving known formulas for Haar-random unitary circuits, and presenting an exact result for maximally chaotic random dual-unitary gates.
引用
收藏
页数:25
相关论文
共 104 条
[91]   Quantum chaos in the Brownian SYK model with large finite N : OTOCs and tripartite information [J].
Suenderhauf, Christoph ;
Piroli, Lorenzo ;
Qi, Xiao-Liang ;
Schuch, Norbert ;
Cirac, J. Ignacio .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
[92]   Localization with random time-periodic quantum circuits [J].
Suenderhauf, Christoph ;
Perez-Garcia, David ;
Huse, David A. ;
Schuch, Norbert ;
Ignacio Cirac, J. .
PHYSICAL REVIEW B, 2018, 98 (13)
[93]   Slow scrambling in disordered quantum systems [J].
Swingle, Brian ;
Chowdhury, Debanjan .
PHYSICAL REVIEW B, 2017, 95 (06)
[94]   Quantum scrambling and the growth of mutual information [J].
Touil, Akram ;
Deffner, Sebastian .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)
[95]   Exact out-of-time-ordered correlation functions for an interacting lattice fermion model [J].
Tsuji, Naoto ;
Werner, Philipp ;
Ueda, Masahito .
PHYSICAL REVIEW A, 2017, 95 (01)
[96]   Entanglement transitions from holographic random tensor networks [J].
Vasseur, Romain ;
Potter, Andrew C. ;
You, Yi-Zhuang ;
Ludwig, Andreas W. W. .
PHYSICAL REVIEW B, 2019, 100 (13)
[97]   Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws [J].
von Keyserlingk, C. W. ;
Rakovszky, Tibor ;
Pollmann, Frank ;
Sondhi, S. L. .
PHYSICAL REVIEW X, 2018, 8 (02)
[98]   Variational Schrieffer-Wolff transformations for quantum many-body dynamics [J].
Wurtz, Jonathan ;
Claeys, Pieter W. ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW B, 2020, 101 (01)
[99]   Accessing scrambling using matrix product operators [J].
Xu, Shenglong ;
Swingle, Brian .
NATURE PHYSICS, 2020, 16 (02) :199-+
[100]   Disentangling Scrambling and Decoherence via Quantum Teleportation [J].
Yoshida, Beni ;
Yao, Norman Y. .
PHYSICAL REVIEW X, 2019, 9 (01)