Impedance methods for electrochemical sensors using nanomaterials

被引:297
作者
Suni, Ian I. [1 ]
机构
[1] Clarkson Univ, CAMP, Dept Chem & Biomol Engn, Potsdam, NY 13699 USA
关键词
analyte detection; biosensor; carbon nanotube; electrochemical impedance spectroscopy; electrochemical sensor; gold nanoparticle; immunosensor; impedance; nanoparticle; nanomaterial;
D O I
10.1016/j.trac.2008.03.012
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This article presents an overview of electrochemical sensors that employ nanomaterials and utilize electrochemical impedance spectroscopy for analyte detection. The most widely utilized nanomaterials in impedance sensors are gold (Au) nanoparticles and carbon nanotubes (CNTs). Au nanoparticles have been employed in impedance sensors to form electrodes from nanoparticle ensembles and to amplify impedance signals by forming nanoparticle-biomolecule conjugates in the solution phase. CNTs have been employed for impedance sensors within composite electrodes and as nanoelectrode arrays. The advantages of nanomaterials in impedance sensors include increased sensor surface area, electrical conductivity and connectivity, chemical accessibility and electrocatalysis. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:604 / 611
页数:8
相关论文
共 49 条
[1]   Recent developments in faradaic bioelectrochemistry [J].
Armstrong, FA ;
Wilson, GS .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2623-2645
[2]   Capacitance measurements of antibody-antigen interactions in a flow system [J].
Berggren, C ;
Johansson, G .
ANALYTICAL CHEMISTRY, 1997, 69 (18) :3651-3657
[3]  
Bondy A.S., 1994, FOCUS AUTISTIC BEHAV, V9, P1, DOI [10.1177/108835769400900301, DOI 10.1177/108835769400900301, DOI 10.1177/0145445501255004]
[4]   Label-free protein recognition using an aptamer-based impedance measurement assay [J].
Cai, H ;
Lee, TMH ;
Hsing, IM .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 114 (01) :433-437
[5]   An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex [J].
Chen, Huan ;
Jiang, Jian-Hui ;
Huang, Yong ;
Deng, Ting ;
Li, Ji-Shan ;
Shen, Guo-Li ;
Yu, Ru-Qin .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 117 (01) :211-218
[6]   A bio-inspired support of gold nanoparticles-chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells [J].
Ding, Lin ;
Hao, Chen ;
Xue, Yadong ;
Ju, Huangxian .
BIOMACROMOLECULES, 2007, 8 (04) :1341-1346
[7]   Metal nanoparticles as labels for heterogeneous, chip-based DNA detection [J].
Fritzsche, W ;
Taton, TA .
NANOTECHNOLOGY, 2003, 14 (12) :R63-R73
[8]   Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing [J].
Gooding, JJ .
ELECTROCHIMICA ACTA, 2005, 50 (15) :3049-3060
[9]   Synthesis and electrochemical applications of gold nanoparticles [J].
Guo, Shaojun ;
Wang, Erkang .
ANALYTICA CHIMICA ACTA, 2007, 598 (02) :181-192
[10]   New frontiers in gold labeling [J].
Hainfeld, JF ;
Powell, RD .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2000, 48 (04) :471-480