Receptor Actions of Synaptically Released Glutamate: The Role of Transporters on the Scale from Nanometers to Microns

被引:107
作者
Zheng, Kaiyu [1 ]
Scimemi, Annalisa [1 ]
Rusakov, Dmitri A. [1 ]
机构
[1] UCL, Inst Neurol, London WC1N 3BG, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
D O I
10.1529/biophysj.108.129874
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Actions of the excitatory neurotransmitter glutamate inside and outside the synaptic cleft determine the activity of neural circuits in the brain. However, to what degree local glutamate transporters affect these actions on a submicron scale remains poorly understood. Here we focus on hippocampal area CA1, a common subject of synaptic physiology studies. First, we use a two-photon excitation technique to obtain an estimate of the apparent (macroscopic) extracellular diffusion coefficient for glutamate, similar to 0.32 mu m(2)/ms. Second, we incorporate this measurement into a Monte Carlo model of the typical excitatory synapse and examine the influence of distributed glutamate transporter molecules on signal transmission. Combined with the results of whole-cell recordings, such simulations argue that, although glutamate transporters have little effect on the activation of synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, this does not rule out the occurrence of up to several dozens of transporters inside the cleft. We further evaluate how the expression pattern of transporter molecules (on the 10 -100 nm scale) affects the activation of N-methyl-D-aspartic acid or metabotropic glutamate receptors in the synaptic vicinity. Finally, we extend our simulations to the macroscopic scale, estimating that synaptic activity sufficient to excite principal neurons could intermittently raise extracellular glutamate to similar to 1 mu M only at sparse (microns apart) hotspots. Greater rises of glutamate occur only when <5% of transporters are available (for instance, when an astrocyte fails). The results provide a quantitative framework for a better understanding of the relationship between glutamate transporters and glutamate receptor signaling.
引用
收藏
页码:4584 / 4596
页数:13
相关论文
共 88 条
[1]   Cooperation between independent hippocampal synapses is controlled by glutamate uptake [J].
Arnth-Jensen, N ;
Jabaudon, D ;
Scanziani, M .
NATURE NEUROSCIENCE, 2002, 5 (04) :325-331
[2]   Extrasynaptic glutamate spillover in the hippocampus: Dependence on temperature and the role of active glutamate uptake [J].
Asztely, F ;
Erdemli, G ;
Kullmann, DM .
NEURON, 1997, 18 (02) :281-293
[3]   Neuroenergetics and the kinetic design of excitatory synapses [J].
Attwell, D ;
Gibb, A .
NATURE REVIEWS NEUROSCIENCE, 2005, 6 (11) :841-849
[4]   Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway [J].
Batchelor, AM ;
Garthwaite, J .
NATURE, 1997, 385 (6611) :74-77
[5]  
Bergles DE, 1998, J NEUROSCI, V18, P7709
[6]   ACCURATE MEASUREMENTS OF THE VISCOSITY OF WATER IN THE TEMPERATURE-RANGE 19.5-DEGREES-C-25.5-DEGREES-C [J].
BERSTAD, DA ;
KNAPSTAD, B ;
LAMVIK, M ;
SKJOLSVIK, PA ;
TORKLEP, K ;
OYE, HA .
PHYSICA A, 1988, 151 (2-3) :246-280
[7]   Emergent properties of networks of biological signaling pathways [J].
Bhalla, US ;
Iyengar, R .
SCIENCE, 1999, 283 (5400) :381-387
[8]   In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching [J].
Binder, DK ;
Papadopoulos, MC ;
Haggie, PM ;
Verkman, AS .
JOURNAL OF NEUROSCIENCE, 2004, 24 (37) :8049-8056
[9]   Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery [J].
Brown, EB ;
Wu, ES ;
Zipfel, W ;
Webb, WW .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2837-2849
[10]   Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains [J].
Bushong, EA ;
Martone, ME ;
Jones, YZ ;
Ellisman, MH .
JOURNAL OF NEUROSCIENCE, 2002, 22 (01) :183-192