DEMO tritium fuel cycle: performance, parameter explorations, and design space constraints

被引:27
作者
Coleman, M. [1 ,2 ,3 ]
Hoerstensmeyer, Y. [4 ]
Cismondi, F. [3 ]
机构
[1] Culham Sci Ctr, United Kingdom Atom Energy Author, Abingdon OX14 3DB, Oxon, England
[2] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
[3] EUROfus Consortium, Boltzmannstr 2, D-85748 Garching, Germany
[4] KIT, Inst Tech Phys, D-76344 Eggenstein Leopoldshafen, Germany
基金
英国工程与自然科学研究理事会;
关键词
DEMO; Fusion reactors; Tritium; Fuel cycle; SELF-SUFFICIENCY; FUSION; BLANKET; SYSTEM;
D O I
10.1016/j.fusengdes.2019.01.150
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
One of the overarching goals of a DEMO-class device is to demonstrate tritium self-sufficiency in a fusion power plant for the first time. A future power reactor will necessarily require a start-up inventory of tritium, m(Tstar1), before commencing fully fledged D-T operations for electricity production. In Europe, it is also presently considered necessary for DEMO to provide a tritium fuel start-up inventory for a subsequent prototype fusion power plant at a certain doubling time, t(d). At present, there is no model capable of estimating m(Tstart) or t(d) for the EUDEMO, which features a Direct Internal Recycling (DIR) loop in its fuel cycle, and is characterised by low load factors (similar to 0.2-0.3). This paper introduces a simplified dynamic tritium fuel cycle model capable estimating m(Tstart) and t(d), which has been specifically designed to take into account the effects of low reactor load factors and irregular operation. Results with and without DIR are presented. The fuel cycle design space is explored, and the sensitivity of the performance (in terms of in m(Tstart) and t(d)) to variations in key parameters and parameter combinations is analysed. Minimum recommended values are suggested for the required tritium breeding ratio (Lambda(r)>= 1.05), load factor (A(glob) >= 0.2), and DIR separation factor (f(DIR) >= 0.6), for the assumptions made herein, based on the response of the fuel cycle performance in the explored design space.
引用
收藏
页码:79 / 90
页数:12
相关论文
共 26 条
[1]   DEUTERIUM-TRITIUM FUEL SELF-SUFFICIENCY IN FUSION-REACTORS [J].
ABDOU, MA ;
VOLD, EL ;
GUNG, CY ;
YOUSSEF, MZ ;
SHIN, K .
FUSION TECHNOLOGY, 1986, 9 (02) :250-285
[2]  
[Anonymous], FUSION ENG DES
[3]   CFTSIM-ITER dynamic fuel cycle model [J].
Busigin, A ;
Gierszewski, P .
FUSION ENGINEERING AND DESIGN, 1998, 39-40 :909-914
[4]   Tritium modelling in HCPB breeder blanket at a system level [J].
Carella, Elisabeta ;
Moreno, Carlos ;
Roca Urgorri, Fernando ;
Rapisarda, David ;
Ibarra, Angel .
FUSION ENGINEERING AND DESIGN, 2017, 124 :687-691
[5]   Tritium fuel cycle modeling and tritium breeding analysis for CFETR [J].
Chen, Hongli ;
Pan, Lei ;
Lv, Zhongliang ;
Li, Wei ;
Zeng, Qin .
FUSION ENGINEERING AND DESIGN, 2016, 106 :17-20
[6]  
Cismondi F., 2018, FUSION ENG DES
[7]   BLUEPRINT: A novel approach to fusion reactor design [J].
Coleman, M. ;
McIntosh, S. .
FUSION ENGINEERING AND DESIGN, 2019, 139 :26-38
[8]   The Direct Internal Recycling concept to simplify the fuel cycle of a fusion power plant [J].
Day, Christian ;
Giegerich, Thomas .
FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) :616-620
[9]   European DEMO design strategy and consequences for materials [J].
Federici, G. ;
Biel, W. ;
Gilbert, M. R. ;
Kemp, R. ;
Taylor, N. ;
Wenninger, R. .
NUCLEAR FUSION, 2017, 57 (09)
[10]   Overview of the design approach and prioritization of R&D activities towards an EU DEMO [J].
Federici, G. ;
Bachmann, C. ;
Biel, W. ;
Boccaccini, L. ;
Cismondi, F. ;
Ciattaglia, S. ;
Coleman, M. ;
Day, C. ;
Diegele, E. ;
Franke, T. ;
Grattarola, M. ;
Hurzlmeier, H. ;
Ibarra, A. ;
Loving, A. ;
Maviglia, F. ;
Meszaros, B. ;
Morlock, C. ;
Rieth, M. ;
Shannon, M. ;
Taylor, N. ;
Tran, M. Q. ;
You, J. H. ;
Wenninger, R. ;
Zani, L. .
FUSION ENGINEERING AND DESIGN, 2016, 109 :1464-1474