Modularity lifting theorems for ordinary Galois representations

被引:22
作者
Geraghty, David [1 ]
机构
[1] Boston Coll, Chestnut Hill, MA 02167 USA
关键词
D O I
10.1007/s00208-018-1742-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize results of Clozel, Harris and Taylor by proving modularity lifting theorems for ordinary l-adic Galois representations of any dimension of an imaginary CM or totally real number field. The main theorems are obtained by establishing an Rred=T theorem over a Hida family. A key part of the proof is to construct appropriate ordinary lifting rings at the primes dividing l and to determine their irreducible components.
引用
收藏
页码:1341 / 1427
页数:87
相关论文
共 32 条
[1]  
[Anonymous], 2011, STAB TRACE FORMULA S
[2]  
[Anonymous], 2008, GRUNDLEHREN MATH WIS
[3]   A Family of Calabi-Yau Varieties and Potential Automorphy II [J].
Barnet-Lamb, Tom ;
Geraghty, David ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) :29-98
[4]  
Bellaïche J, 2009, ASTERISQUE, P1
[5]  
BERNSTEIN IN, 1977, ANN SCI ECOLE NORM S, V10, P441
[6]  
Borel A., 1979, Automorph Forms, Representations and L-Functions, VXXXI, P189
[7]  
Borel A., 1963, Publications Mathematiques de l'IHES, V16, P5
[8]  
Casselman W., 1995, PREPRINT
[9]  
CHENEVIER G, 2010, MATH J, V1, P53, DOI DOI 10.4310/CJM.2013.v1.n1.a2
[10]   AUTOMORPHY FOR SOME l-ADIC LIFTS OF AUTOMORPHIC MOD l GALOIS REPRESENTATIONS [J].
Clozel, Laurent ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 108, 2008, 108 (108) :1-181