3D Printing of a Robust Polyamide-12-Carbon Black Composite via Selective Laser Sintering: Thermal and Electrical Conductivity

被引:81
作者
Espera, Alejandro H., Jr. [1 ,2 ]
Valino, Arnaldo D. [1 ,3 ]
Palaganas, Jerome O. [1 ]
Souza, Lucio [1 ]
Chen, Qiyi [1 ]
Advincula, Rigoberto C. [1 ]
机构
[1] Case Western Reserve Univ, Sch Engn, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
[2] Ateneo de Davao Univ, Sch Engn & Architecture, Elect Engn Dept, Davao 8016, Davao Del Sur, Philippines
[3] Adamson Univ, Coll Engn, Mech Engn Dept, Manila 1000, Metro Manila, Philippines
关键词
3D printing; additive manufacturing; carbon black; nylon-12; selective laser sintering; CARBON-BLACK; POWDER;
D O I
10.1002/mame.201800718
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The need for big volume powder materials in building mechanically robust sintered parts via selective laser sintering (SLS) has been observed considering the direction towards the future of mass fabrication. This work presents a facile approach of combining polyamide-12 (PA12) and carbon black (CB) powders to be used in the SLS application. The study investigates the mixing consistency, mechanical property, and thermal stability changes of the resulting 3D printed material. Bulk resistivity is correlated with the amount of CB, showing consistency of carbon content in the sintered parts produced by the effective separate grains mixing method. 3D printed parts are built with 0, 1.5, 3, 5 and 10 wt% CB via SLS. Improvements are seen at 1.5 and 3 wt% CB with the blockage of crack growth by the CB particles on applied load. For concentrations greater than 3 wt%, mechanical properties degrade due to hindering of physical contact between PA12 particles caused by CB particles, thereby reducing the effectiveness of the sintering process. The CB/PA12 sintered parts exhibit enhanced thermal stability resulting in higher degradation temperatures than the neat PA12. Therefore, in this study, thermally and mechanically enhanced 3D printed CB/PA12 build parts via SLS are successfully demonstrated.
引用
收藏
页数:8
相关论文
共 45 条
[1]  
[Anonymous], SELECTIVE LASER SINT
[2]  
[Anonymous], EC SAFETY DATA SHEET
[3]   Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding [J].
Athreya, Siddharth Ram ;
Kalaitzidou, Kyriaki ;
Das, Suman .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (04) :506-510
[4]   Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering [J].
Athreya, Siddharth Ram ;
Kalaitzidou, Kyriaki ;
Das, Suman .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (10-11) :2637-2642
[5]  
Beaman J., 1997, SOLID FREEFORM FABRI
[6]   Preliminary experience with medical applications of rapid prototyping by selective laser sintering [J].
Berry, E ;
Brown, JM ;
Connell, M ;
Craven, CM ;
Efford, ND ;
Radjenovic, A ;
Smith, MA .
MEDICAL ENGINEERING & PHYSICS, 1997, 19 (01) :90-96
[7]  
Bourell D., 2005, P VRAP LEIR
[8]   Physical and electrochemical evaluation of commercial carbon black as electrocatalysts supports for DMFC applications [J].
Carmo, Marcelo ;
Dos Santos, Antonio R. ;
Poco, Joao G. R. ;
Linardi, Marcelo .
JOURNAL OF POWER SOURCES, 2007, 173 (02) :860-866
[9]   Dependence of mechanical properties of polyamide components on build parameters in the SLS process [J].
Caulfield, B. ;
McHugh, P. E. ;
Lohfeld, S. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 182 (1-3) :477-488
[10]   Mechanically Robust, Ultraelastic Hierarchical Foam with Tunable Properties via 3D Printing [J].
Chen, Qiyi ;
Cao, Peng-Fei ;
Advincula, Rigoberto C. .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (21)