Earthworms regulate ability of biochar to mitigate CO2 and N2O emissions from a tropical soil

被引:15
|
作者
Namoi, Nictor [1 ]
Pelster, David [2 ,5 ]
Rosenstock, Todd S. [1 ,4 ]
Mwangi, Lukelysia [1 ]
Kamau, Solomon [1 ,3 ]
Mutuo, Paul [2 ]
Barrios, Edmundo [1 ,6 ]
机构
[1] World Agroforestry Ctr ICRAF, POB 30677-00100, Nairobi, Kenya
[2] Int Livestock Res Inst, POB 30709-00100, Nairobi, Kenya
[3] Univ Nairobi, Coll Agr & Vet Sci, Dept Land Resource Management & Agr Technol, POB 29053-00625, Nairobi, Kenya
[4] CGIAR Res Program Climate Change Agr & Food Secur, 13 Ave Clin, Kinshasa, DEM REP CONGO
[5] Agr & Agri Food Canada, 2560 Blvd Hochelaga, Quebec City, PQ, Canada
[6] Food & Agr Org United Nations, Viale Terme di Caracalla, I-00153 Rome, Italy
关键词
Biochar; Earthworm; Soil N2O emission; Soil CO2 emission; NITROUS-OXIDE EMISSIONS; SHORT-TERM; ORGANIC-MATTER; CARBON-DIOXIDE; PONTOSCOLEX-CORETHRURUS; DENITRIFYING BACTERIA; MACROFAUNA; MOISTURE; FLUXES; BIOTA;
D O I
10.1016/j.apsoil.2019.04.001
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soils account for > 80% and 20% of the total agricultural N2O and CO2 emissions respectively. Soil management activities that target improved soil health, such as enhancing earthworm activity, may also stimulate further emissions of CO2 and N2O. One recommended strategy for mitigating these soil emissions is biochar amendment. However greater clarity on the interaction between earthworm activity and biochar, and subsequent impact on CO2 and N2O are needed to evaluate the environmental impacts of management practice. We measured N2O and CO2 emissions from a kaolinitic Acrisol in the presence or absence of earthworms, with and without application of two different biochars in a microcosm study. The two biochars were derived from indigenous trees; Zanthoxylum gilletii and Croton megalocarpus, and were tested at three application rates of 5 Mg ha(-1), 10 Mg ha(-1) and 25 Mg ha(-1). Emissions of CO2 and N2O increased by 26% and 72% respectively in the presence of earthworms. In microcosms with biochar and earthworms however, emissions depended on type of biochar and rate of application. With C. megalocarpus, CO2 emission increased with increasing rates of biochar application with 25 Mg ha(-1) resulting in higher CO2 fluxes compared to no-biochar control (p=0.002), while no change was observed with Z. gilletii at the same rate. Nitrous oxide emissions were suppressed at 25 Mg ha(-1) for both C. megalocarpus (p=0.009) and Z. gilletii (p=0.011). Reduction in N2O flux was however not consistent across biochar types. No change in N2O was observed with 5 Mg ha(-1) and 10 Mg ha(-1) of C. megalocarpus. Biochar from Z. gilletii at 5 Mg ha(-1) however led to increase in N2O emissions (p < 0.001). Our findings suggest that earthworms may moderate the effect of biochar, with suppression of N2O emissions occurring at only high biochar application rates, which may occur at the cost of increasing CO2 emissions. These findings contrast with biochar suppressing effect on N2O emissions even at moderate biochar rates of (10 Mg ha(-1)) when in absence of earthworms, an outcome typical of many laboratory experiments. These findings highlight new interactions among application rate, source of biochar (and hence properties) and earthworms.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 50 条
  • [41] Nitrogen fertilization and liming increased CO2 and N2O emissions from tropical ferralsols, but not from a vertisol
    Ntinyari, Winnie
    Reichel, Ruediger
    Gweyi-Onyango, Joseph P.
    Giweta, Mekonnen
    Wissel, Holger
    Masso, Cargele
    Bol, Roland
    Brueggemann, Nicolas
    SOIL USE AND MANAGEMENT, 2023, 39 (03) : 1125 - 1139
  • [42] Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation?
    Yuan, Yinghong
    Chen, Huaihai
    Yuan, Wenqiao
    Williams, David
    Walker, John T.
    Shi, Wei
    SOIL BIOLOGY & BIOCHEMISTRY, 2017, 113 : 14 - 25
  • [43] How does biochar influence soil nitrification and nitrification-induced N2O emissions?
    Liu, Qi
    Wu, Yaxin
    Ma, Jing
    Jiang, Jiang
    You, Xinyi
    Lv, Runjin
    Zhou, Sijing
    Pan, Chang
    Liu, Benjuan
    Xu, Qiao
    Xie, Zubin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 908
  • [44] Short-term drought response of N2O and CO2 emissions from mesic agricultural soils in the US Midwest
    Gelfand, Ilya
    Cui, Mengdi
    Tang, Jianwu
    Robertson, G. Philip
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2015, 212 : 127 - 133
  • [45] CO2 and N2O emissions in response to dolomite application are moisture dependent in an acidic paddy soil
    Wu, Hongtao
    Hao, Xiaohui
    Xu, Peng
    Hu, Jinli
    Jiang, Mengdie
    Shaaban, Muhammad
    Zhao, Jinsong
    Wu, Yupeng
    Hu, Ronggui
    JOURNAL OF SOILS AND SEDIMENTS, 2020, 20 (08) : 3136 - 3147
  • [46] Increased Forest Soil CO2 and N2O Emissions During Insect Infestation
    Gruening, Maren Marine
    Germeshausen, Franziska
    Thies, Carsten
    L-M-Arnold, Anne
    FORESTS, 2018, 9 (10):
  • [47] Effects of Environmental Drivers and Agricultural Management on Soil CO2 and N2O Emissions
    Dencso, Marton
    Horel, Agota
    Bogunovic, Igor
    Toth, Eszter
    AGRONOMY-BASEL, 2021, 11 (01):
  • [48] Soil N2O and CO2 emissions from cotton in Australia under varying irrigation management
    Clemens Scheer
    Peter R. Grace
    David W. Rowlings
    Jose Payero
    Nutrient Cycling in Agroecosystems, 2013, 95 : 43 - 56
  • [49] Gas entrapment and microbial N2O reduction reduce N2O emissions from a biochar-amended sandy clay loam soil
    Harter, Johannes
    Guzman-Bustamante, Ivan
    Kuehfuss, Stefanie
    Ruser, Reiner
    Well, Reinhard
    Spott, Oliver
    Kappler, Andreas
    Behrens, Sebastian
    SCIENTIFIC REPORTS, 2016, 6
  • [50] Soil N2O Emissions under Different N Rates in an Oil Palm Plantation on Tropical Peatland
    Chaddy, Auldry
    Melling, Lulie
    Ishikura, Kiwamu
    Hatano, Ryusuke
    AGRICULTURE-BASEL, 2019, 9 (10):