This paper studies the parametric instability of hybrid nanocomposite plates under an arbitrary periodic load in thermal environments. The hybrid nanocomposite plate is a three-layer board. It has metal layers on both surfaces and one core reinforced with functionally graded (FG) carbon nanotubes (CNTs). The Galerkin method with a reduced eigenfunction transformation is applied to establish the governing equations of motion. According to the Bolotin method, a set of Mathieu-type differential equations is formed to determine dynamic instability regions and dynamic instability index (DII). The in-plane periodic stress is taken to be a combination of pulsating axial and bending stresses in the example problems. The effects of the layer thickness ratio, CNTs volume fraction, CNTs distribution type, temperature, bending stress, static and dynamic load on the dynamic instability of hybrid nanocomposite plates are investigated and discussed.
机构:
Univ Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei, Peoples R China
City Univ Hong Kong, Dept Civil & Architectural Engn, Kowloon, Hong Kong, Peoples R China
USTC CityU Joint Adv Res Ctr, Suzhou, Jiangsu, Peoples R ChinaUniv Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei, Peoples R China
Lei, Z. X.
Liew, K. M.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Civil & Architectural Engn, Kowloon, Hong Kong, Peoples R China
USTC CityU Joint Adv Res Ctr, Suzhou, Jiangsu, Peoples R ChinaUniv Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei, Peoples R China
Liew, K. M.
Yu, J. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei, Peoples R China
USTC CityU Joint Adv Res Ctr, Suzhou, Jiangsu, Peoples R ChinaUniv Sci & Technol China, CAS Key Lab Mech Behav & Design Mat, Hefei, Peoples R China