Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand

被引:69
作者
Yang, Dongfeng [1 ]
Jiang, Chao [1 ]
Cai, Guowei [1 ]
Yang, Deyou [1 ]
Liu, Xiaojun [1 ]
机构
[1] Northeast Elect Power Univ, Key Lab Modern Power Syst Simulat & Control & Ren, Minist Educ, Jilin 132012, Jilin, Peoples R China
基金
国家重点研发计划;
关键词
Multi-energy microgrid; Optimal planning; Interval method; Uncertainties; DISTRIBUTED ENERGY-SYSTEMS; OPTIMAL-DESIGN; COMBINED HEAT; MULTIOBJECTIVE OPTIMIZATION; DISTRIBUTION NETWORK; ROBUST OPTIMIZATION; POWER-SYSTEMS; ELECTRICITY; PLACEMENT; OPERATION;
D O I
10.1016/j.apenergy.2020.115491
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Creating an optimal design for multi-energy microgrids is a challenge owing to the complicated energy flows existing between sources and demands. In addition, the uncertainties of microgrids, in particular, the stochastic problem of wind, solar, and energy demands, are difficult to describe and overcome. To address these problems, this study proposes an interval method based planning model for MEMGs that determines the device to be installed, the optimal device capacity, the optimal device placement, and the associated optimal operation of multiple energy types with considering uncertainties, the electrical power flow and heat flow equations was also included in our model. These uncertainties of renewable energy and demand are described as intervals, and based on the interval linear programming theory, the corresponding uncertain constraints could be converted to deterministic ones. The developed model is formulated as mixed-integer linear programming, which renders the design model easy to understand and compute. The feasibility and superiority of the model are verified via case studies and analyses, although the results of proposed model turn to be more conservative which means low efficiency in economy, the planning scheme is able to adapt to different uncertain scenarios and maintain the reliability of operation, which means that the robustness of the result were enhanced.
引用
收藏
页数:16
相关论文
共 49 条
[1]   Treatment of uncertainty for next generation power systems: State-of-the-art in stochastic optimization [J].
Alqurashi, Amru ;
Etemadi, Amir H. ;
Khodaei, Amin .
ELECTRIC POWER SYSTEMS RESEARCH, 2016, 141 :233-245
[2]   Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization [J].
Atwa, Y. M. ;
El-Saadany, E. F. ;
Salama, M. M. A. ;
Seethapathy, R. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (01) :360-370
[3]   Energy management and operation modelling of hybrid AC-DC microgrid [J].
Baboli, Payam Teimourzadeh ;
Shahparasti, Mahdi ;
Moghaddam, Mohsen Parsa ;
Haghifam, Mahmoud Reza ;
Mohamadian, Mustafa .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2014, 8 (10) :1700-1711
[4]   Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system [J].
Baghaee, H. R. ;
Mirsalim, M. ;
Gharehpetian, G. B. ;
Talebi, H. A. .
ENERGY, 2016, 115 :1022-1041
[5]   Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty [J].
Bai, Linquan ;
Li, Fangxing ;
Cui, Hantao ;
Jiang, Tao ;
Sun, Hongbin ;
Zhu, Jinxiang .
APPLIED ENERGY, 2016, 167 :270-279
[6]   OPTIMAL SIZING OF CAPACITORS PLACED ON A RADIAL-DISTRIBUTION SYSTEM [J].
BARAN, ME ;
WU, FF .
IEEE TRANSACTIONS ON POWER DELIVERY, 1989, 4 (01) :735-743
[7]   NETWORK RECONFIGURATION IN DISTRIBUTION-SYSTEMS FOR LOSS REDUCTION AND LOAD BALANCING [J].
BARAN, ME ;
WU, FF .
IEEE TRANSACTIONS ON POWER DELIVERY, 1989, 4 (02) :1401-1407
[8]   Planned Scheduling for Economic Power Sharing in a CHP-Based Micro-Grid [J].
Basu, Ashoke Kumar ;
Bhattacharya, Aniruddha ;
Chowdhury, Sunetra ;
Chowdhury, S. P. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) :30-38
[9]   Adaptive Robust Optimization for the Security Constrained Unit Commitment Problem [J].
Bertsimas, Dimitris ;
Litvinov, Eugene ;
Sun, Xu Andy ;
Zhao, Jinye ;
Zheng, Tongxin .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (01) :52-63
[10]   Optimization of micro-grid system using MOPSO [J].
Borhanazad, Hanieh ;
Mekhilef, Saad ;
Ganapathy, Velappa Gounder ;
Modiri-Delshad, Mostafa ;
Mirtaheri, Ali .
RENEWABLE ENERGY, 2014, 71 :295-306