On Lp multiple orthogonal polynomials

被引:2
|
作者
Kroo, Andras [1 ,2 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[2] Budapest Univ Technol & Econ, Dept Anal, Budapest, Hungary
关键词
Multiple orthogonal polynomials; Multiple extremal polynomials; L-p norm; Weak Chebyshev spaces;
D O I
10.1016/j.jmaa.2013.05.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by P-n the space of real algebraic polynomials of degree at most n - 1 and consider a multi-index n := (n(1), ... , n(d)) is an element of N-d, d >= 1, of length vertical bar n vertical bar := n(1) + ... + n(d). Then given the nonnegative weight functions w(j) is an element of L-infinity [a, b], 1 <= j <= d, the polynomial Q is an element of P vertical bar n vertical bar+1 \ {0} is called a multiple orthogonal polynomial relative to n and the weights w(j), 1 <= j <= d, if integral([a,b]) wj(x)x(k)Q(x)d mu = 0, 0 <= k <= n(j) - 1, 1 <= j <= d. The above orthogonality relations are equivalent to the conditions for the L-2 multiple best approximation parallel to Q parallel to(L2(wj)) <= parallel to Q - g parallel to(L2(wj)), for all g is an element of P-nj, 1 <= j <= d. The existence of multiple L-2 orthogonal polynomials easily follows from the solvability of the above linear system. The analogous question for the multiple best L-p approximation, i.e., the existence of an extremal polynomial Q(p) is an element of P vertical bar n vertical bar+1 \ (0) satisfying parallel to Q(p)parallel to(Lp(wj)) <= parallel to Q(p) - g parallel to(Lp(wj)), for all g is an element of P-nj, 1 <= j <= d, poses a more difficult nonlinear problem when 1 <= p <= infinity, p not equal 2. In this paper we shall address this question and verify the existence and uniqueness of multiple L-p orthogonal polynomials under proper conditions. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 156
页数:10
相关论文
共 50 条
  • [31] A Christoffel-Darboux formula for multiple orthogonal polynomials
    Daems, E
    Kuijlaars, ABJ
    JOURNAL OF APPROXIMATION THEORY, 2004, 130 (02) : 190 - 202
  • [32] Laguerre-Angelesco multiple orthogonal polynomials on an r - star
    Leurs, Marjolein
    Van Assche, Walter
    JOURNAL OF APPROXIMATION THEORY, 2020, 250
  • [33] Mixed Type Multiple Orthogonal Polynomials for Two Nikishin Systems
    Fidalgo Prieto, U.
    Garcia, A. Lopez
    Lopez Lagomasino, G.
    Sorokin, V. N.
    CONSTRUCTIVE APPROXIMATION, 2010, 32 (02) : 255 - 306
  • [34] Applications of multiple orthogonal polynomials with hypergeometric moment generating functions
    Wolfs, Thomas
    ADVANCES IN APPLIED MATHEMATICS, 2024, 158
  • [35] Determinantal approach to multiple orthogonal polynomials and the corresponding integrable equations
    Doliwa, Adam
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (02)
  • [36] Jacobi–Angelesco Multiple Orthogonal Polynomials on an r-Star
    Marjolein Leurs
    Walter Van Assche
    Constructive Approximation, 2020, 51 : 353 - 381
  • [37] Mixed Type Multiple Orthogonal Polynomials for Two Nikishin Systems
    U. Fidalgo Prieto
    A. López García
    G. López Lagomasino
    V. N. Sorokin
    Constructive Approximation, 2010, 32 : 255 - 306
  • [38] Hahn multiple orthogonal polynomials of type I: Hypergeometric expressions
    Branquinho, Amilcar
    Diaz, Juan E. F.
    Foulquie-Moreno, Ana
    Manas, Manuel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
  • [39] On some properties of q-Hahn multiple orthogonal polynomials
    Arvesu, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) : 1462 - 1469
  • [40] On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials
    Aptekarev, A. I.
    Lopez Lagomasino, G.
    Martinez-Finkelshtein, A.
    RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (03) : 389 - 449