Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery

被引:13
|
作者
Huang, Yuhang [1 ]
Jazani, Arman Moini [2 ]
Howell, Elliot P. [1 ]
Reynolds, Lisa A. [3 ]
Oh, Jung Kwon [2 ]
Moffitt, Matthew G. [1 ]
机构
[1] Univ Victoria, Dept Chem, Victoria, BC V8W 2Y2, Canada
[2] Concordia Univ, Dept Chem & Biochem, Montreal, PQ H4B 1R6, Canada
[3] Univ Victoria, Dept Biochem & Microbiol, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
reduction-responsive block copolymers; microfluidics; directed self-assembly; nanoparticles; drug delivery; BLOCK-COPOLYMER MICELLES; MORPHOLOGICAL CONTROL; PARTICLE-SIZE; FLOW; GLUTATHIONE; DESIGN; RELEASE; THERAPEUTICS; NANOCARRIERS; STRATEGY;
D O I
10.1021/acsbiomaterials.0c00896
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
We demonstrate microfluidic manufacturing of glutathione (GSH)- responsive polymer nanoparticles (PNPs) with controlled in vitro pharmacological properties for selective drug delivery. This work leverages previous fundamental work on microfluidic control of the physicochemical properties of GSH-responsive PNPs containing cleavable disulfide groups in two different locations (core and interface, DualM PNPs). In this paper, we employ a two-phase gas-liquid microfluidic reactor for the flow-directed manufacturing of paclitaxel-loaded or DiI-loaded DualM PNPs (PAX-PNPs or DiI-PNPs, where DiI is a fluorescent drug surrogate dye). We find that both PAX-PNPs and DiI-PNPs exhibit similar flow-tunable sizes, morphologies, and internal structures to those previously described for empty DualM PNPs. Fluorescent imaging of DiI-PNP formulations shows that microfluidic manufacturing greatly improves the homogeneity of drug dispersion within the PNP population compared to standard bulk microprecipitation. Encapsulation of PAX in DualM PNPs significantly increases its selectivity to cancerous cells, with various PAX-PNP formulations showing higher cytotoxicity against cancerous MCF-7 cells than against non-cancerous HaCaT cells, in contrast to free PAX, which showed similar cytotoxicity in the two cell lines. In addition, the characterization of DualM PNP formulations formed at various microfluidic flow rates reveals that critical figures of merit for drug delivery function-including encapsulation efficiencies, GSH-triggered release rates, rates of cell uptake, cytotoxicities, and selectivity to cancerous cells-exhibit microfluidic flow tunability that mirrors trends in PNP size. These results highlight the potential of two-phase microfluidic manufacturing for controlling both structure and drug delivery function of biological stimuli-responsive nanomedicines toward improved therapeutic outcomes.
引用
收藏
页码:5069 / 5083
页数:15
相关论文
共 50 条
  • [21] Mesoporous Silica Nanoparticles-Based Stimuli-Responsive Drug Delivery Systems Gated by Polymers
    Wang, Xinghuo
    Tang, Jun
    Yang, Yingwei
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (01): : 28 - 43
  • [22] Curcumin polymer coated, self-fluorescent and stimuli-responsive multifunctional mesoporous silica nanoparticles for drug delivery
    Xu, Xiubin
    Lu, Shaoyu
    Wu, Can
    Wang, Zhiyong
    Feng, Chen
    Wen, Na
    Liu, Mingzhu
    Zhang, Xinyu
    Liu, Zhen
    Liu, Yongqi
    Ren, Chunzhen
    MICROPOROUS AND MESOPOROUS MATERIALS, 2018, 271 : 234 - 242
  • [23] Negatively charged polymer-shielded supramolecular nano-micelles with stimuli-responsive property for anticancer drug delivery
    Yin, Juanjuan
    Wang, Jianrong
    Dong, Xue
    Huang, Congshu
    Wei, Hua
    Zhao, Guanghui
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2022, 627
  • [24] Stimuli-Responsive Hollow Polymer Nanoparticles for Use as Novel Delivery Systems
    Kim, Jun-Hyun
    Burnett, Roarke D.
    Gabriel, Aman
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2012, 8 (03) : 432 - 438
  • [25] Advances in stimuli-responsive gold nanorods for drug-delivery and targeted therapy systems
    Hajebi, Sakineh
    Chamanara, Mohsen
    Nasiri, Shadi Sadat
    Ghasri, Mahsa
    Mouraki, Alireza
    Heidari, Reza
    Nourmohammadi, Abbas
    BIOMEDICINE & PHARMACOTHERAPY, 2024, 180
  • [26] Stimuli-responsive single-chain polymeric nanoparticles towards the development of efficient drug delivery systems
    Cheng, Chih-Chia
    Lee, Duu-Jong
    Liao, Zhi-Sheng
    Huang, Jyun-Jie
    POLYMER CHEMISTRY, 2016, 7 (40) : 6164 - 6169
  • [27] Micelle-based nanoparticles with stimuli-responsive properties for drug delivery
    Maboudi, Amir Hosein
    Lotfipour, Mitra Hosseini
    Rasouli, Milad
    Azhdari, Mohammad H.
    Macloughlin, Ronan
    Bekeschus, Sander
    Doroudian, Mohammad
    NANOTECHNOLOGY REVIEWS, 2024, 13 (01)
  • [28] Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms
    Sun, Yuzhe
    Davis, Edward
    NANOMATERIALS, 2021, 11 (03) : 1 - 103
  • [29] Endogenous Stimuli-responsive Nanocarriers for Drug Delivery
    Chen, Huachao
    Liu, Danyang
    Guo, Zijian
    CHEMISTRY LETTERS, 2016, 45 (03) : 242 - 249
  • [30] Stimuli-responsive polypeptides for controlled drug delivery
    Zhang, Peng
    Li, Mingqian
    Xiao, Chunsheng
    Chen, Xuesi
    CHEMICAL COMMUNICATIONS, 2021, 57 (75) : 9489 - 9503