Self-force via m-mode regularization and 2+1D evolution. III. Gravitational field on Schwarzschild spacetime

被引:47
作者
Dolan, Sam R. [1 ]
Barack, Leor [2 ]
机构
[1] Univ Sheffield, Consortium Fundamental Phys, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 08期
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
RADIATION REACTION; CURVED SPACETIME; PARTICLES; STABILITY; MOTION;
D O I
10.1103/PhysRevD.87.084066
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This is the third in a series of papers aimed at developing a practical time-domain method for self-force calculations in Kerr spacetime. The key elements of the method are (i) removal of a singular part of the perturbation field with a suitable analytic "puncture," (ii) decomposition of the perturbation equations in azimuthal (m-)modes, taking advantage of the axial symmetry of the Kerr background, (iii) numerical evolution of the individual m- modes in 2 + 1 dimensions with a finite difference scheme, and (iv) reconstruction of the local self-force from the mode sum. Here we report a first implementation of the method to compute the gravitational self-force. We work in the Lorenz gauge, solving directly for the metric perturbation in 2 + 1 dimensions, for the case of circular geodesic orbits. The modes m 0, 1 contain nonradiative pieces, whose time-domain evolution is hampered by certain gauge instabilities. We study this problem in detail and propose ways around it. In the current work we use the Schwarzschild geometry as a platform for development; in a forthcoming paper-the fourth in the series-we apply our method to the gravitational self-force in Kerr geometry.
引用
收藏
页数:38
相关论文
共 103 条
  • [1] Search for gravitational waves from binary black hole inspiral, merger, and ringdown
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abernathy, M.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adhikari, R.
    Ajith, P.
    Allen, B.
    Allen, G. S.
    Ceron, E. Amador
    Amin, R. S.
    Anderson, S. B.
    Anderson, W. G.
    Antonucci, F.
    Arain, M. A.
    Araya, M. C.
    Aronsson, M.
    Aso, Y.
    Aston, S. M.
    Astone, P.
    Atkinson, D.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Baker, P.
    Ballardin, G.
    Ballinger, T.
    Ballmer, S.
    Barker, D.
    Barnum, S.
    Barone, F.
    Barr, B.
    Barriga, P.
    Barsotti, L.
    Barsuglia, M.
    Barton, M. A.
    Bartos, I.
    Bassiri, R.
    Bastarrika, M.
    Bauchrowitz, J.
    Bauer, Th. S.
    Behnke, B.
    Beker, M. G.
    Belletoile, A.
    Benacquista, M.
    Bertolini, A.
    Betzwieser, J.
    Beveridge, N.
    [J]. PHYSICAL REVIEW D, 2011, 83 (12):
  • [2] STABILITY OF GRAVITY WITH A COSMOLOGICAL CONSTANT
    ABBOTT, LF
    DESER, S
    [J]. NUCLEAR PHYSICS B, 1982, 195 (01) : 76 - 96
  • [3] Akcay S., IN PRESS
  • [4] Gravitational self-force and the effective-one-body formalism between the innermost stable circular orbit and the light ring
    Akcay, Sarp
    Barack, Leor
    Damour, Thibault
    Sago, Norichika
    [J]. PHYSICAL REVIEW D, 2012, 86 (10):
  • [5] Fast frequency-domain algorithm for gravitational self-force: Circular orbits in Schwarzschild spacetime
    Akcay, Sarp
    [J]. PHYSICAL REVIEW D, 2011, 83 (12):
  • [6] [Anonymous], ARXIV11022857
  • [7] [Anonymous], ARXIV12013621
  • [8] [Anonymous], 2004, RELATIVISTS TOOLKIT
  • [9] [Anonymous], 1992, INT SERIES MONOGRAPH
  • [10] Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation and numerical implementation
    Barack, L
    Lousto, CO
    [J]. PHYSICAL REVIEW D, 2005, 72 (10):