Hydrogen production from methanol reforming in microwave "tornado"-type plasma

被引:75
|
作者
Bundaleska, N. [1 ]
Tsyganov, D. [1 ]
Saavedra, R. [1 ]
Tatarova, E. [1 ]
Dias, F. M. [1 ]
Ferreira, C. M. [1 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Inst Plasmas & Nucl Fus, P-1049001 Lisbon, Portugal
关键词
Microwave plasma; Methanol; Vortex; Hydrogen; Reforming; NONTHERMAL PLASMA; HYDROCARBONS; ETHANOL; DECOMPOSITION; GENERATION; CONVERSION; REACTOR;
D O I
10.1016/j.ijhydene.2013.05.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A microwave (2.45 GHz) "tornado"-type plasma with a high-speed tangential gas injection (swirl) at atmospheric pressure conditions has been applied for methanol reforming. The vortex gas flow "detaches" the hot plasma core from the wall and stable operation of the plasma source has been achieved. The hydrogen production rate dependence on the partial methanol flux has been investigated both in Ar and Ar + water plasma environments. Hydrogen, carbon oxide and carbon dioxide are the main decomposition products. Mass and FT-IR spectroscopy have been used to detect the species in the outlet gas stream. It has been found that the hydrogen production rate increases by nearly a factor of 1.5 when water is added into the plasma. Higher energetic hydrogen mass yield is achieved when compared with the results obtained under laminar gas flow conditions. Practically 100% methanol conversion rate has been achieved. Moreover, optical emission spectroscopy has been applied to determine the gas temperature, the electron density and the radiative species present in the plasma. A theoretical model based on a set of equations describing the chemical kinetics and the gas thermal balance equation has been developed. The theoretical results on the decomposition products agree well with the experimental ones and confirm that microwave plasma decomposition of methanol is a temperature dependent process. The results clearly show that this type of plasma is an efficient tool for hydrogen production. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9145 / 9157
页数:13
相关论文
共 50 条
  • [41] Hydrogen generation from water, methane, and methanol with nonthermal plasma
    Kabashima, H
    Einaga, H
    Futamura, S
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, 39 (02) : 340 - 345
  • [42] Hydrogen Production by Microwave Steam Reforming
    Fukushima, Hideoki
    JOURNAL OF THE JAPAN PETROLEUM INSTITUTE, 2018, 61 (02) : 106 - 112
  • [43] Steam Plasma Methane Reforming for Hydrogen Production
    Hrabovsky, M.
    Hlina, M.
    Kopecky, V.
    Maslani, A.
    Krenek, P.
    Serov, A.
    Hurba, O.
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2018, 38 (04) : 743 - 758
  • [44] A Microsolar Collector for Hydrogen Production by Methanol Reforming
    Zimmerman, Raul
    Morrison, Graham
    Rosengarten, Gary
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2010, 132 (01): : 0110051 - 0110055
  • [45] Fabrication and Application of Catalytic Carbon Membranes for Hydrogen Production from Methanol Steam Reforming
    Zhang, Bing
    Zhao, Dandan
    Wu, Yonghong
    Liu, Hongjing
    Wang, Tonghua
    Qiu, Jieshan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (02) : 623 - 632
  • [46] Thermodynamic analysis of hydrogen production for fuel cells from oxidative steam reforming of methanol
    Wang, Jihui
    Chen, Hong
    Tian, Ye
    Yao, Mingfa
    Li, Yongdan
    FUEL, 2012, 97 : 805 - 811
  • [47] Effect of microwave double absorption on hydrogen generation from methanol steam reforming
    Chen, Wei-Hsin
    Lin, Bo-Jhih
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (05) : 1987 - 1997
  • [48] Experiments on hydrogen production from methanol steam reforming in the microchannel reactor
    Du, Xiaoze
    Shen, Yinqi
    Yang, Lijun
    Shi, Yingshuang
    Yang, Yongping
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (17) : 12271 - 12280
  • [49] Production of hydrogen via methane reforming using atmospheric pressure microwave plasma
    Jasinski, Mariusz
    Dors, Miroslaw
    Mizeraczyk, Jerzy
    JOURNAL OF POWER SOURCES, 2008, 181 (01) : 41 - 45
  • [50] Large capacity hydrogen production by microwave discharge plasma in liquid fuels ethanol
    Sun, Bing
    Zhao, Xiaotong
    Xin, Yanbin
    Zhu, Xiaomei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (38) : 24047 - 24054