Scrutinizing metal-ligand covalency and redox non-innocence via nitrogen K-edge X-ray absorption spectroscopy

被引:29
|
作者
Lukens, James T. [1 ]
DiMucci, Ida M. [1 ]
Kurogi, Takashi [2 ]
Mindiola, Daniel J. [2 ]
Lancaster, Kyle M. [1 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Baker Lab, Ithaca, NY 14853 USA
[2] Univ Penn, Dept Chem, 231 South 34th St, Philadelphia, PA 19104 USA
关键词
DENSITY-FUNCTIONAL CALCULATIONS; AB-INITIO CALCULATION; ELECTRONIC-STRUCTURE; VIBRATIONAL ABSORPTION; OXIDATION-STATE; BASIS-SETS; COMPLEXES; SPECTRA; VALENCE; PROBE;
D O I
10.1039/c8sc03350a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nitrogen K-edge X-ray absorption spectra (XAS) were obtained for 19 transition metal complexes bearing bipyridine, ethylenediamine, ammine, and nitride ligands. Time-dependent density functional theory (TDDFT) and DFT/restricted open configuration interaction singles (DFT/ROCIS) calculations were found to predict relative N K-edge XAS peak energies with good fidelity to experiment. The average difference (| DE|) between experimental and linear corrected calculated energies were found to be 0.55 similar to 0.05 eV and 0.46 similar to 0.04 eV, respectively, using the B3LYP hybrid density functional and scalar relativistically recontracted ZORA-def2-TZVP(-f) basis set. Deconvolution of these global correlations into individual Ndonor ligand classes gave improved agreement between experiment and theory with | DE| less than 0.4 eV for all ligand classes in the case of DFT/ROCIS. In addition, calibration method-dependent values for the N 1s /2p radial dipole integral of 25.4 similar to 1.7 and 26.8 similar to similar to 1.9 are obtained, affording means to estimate the nitrogen 2p character in unfilled frontier molecular orbitals. For the complexes studied, nitrogen covalency values correlate well to those calculated by hybrid DFT with an R2 1/4 0.92 similar to 0.01. Additionally, as a test case, a well-characterized PNP ligand framework (PNP 1/4 N[ 2-P(CHMe2) 2-4methylphenyl] 2 1 similar to) coordinated to NiII is investigated for its ability to act as a redox non-innocent ligand. Upon oxidation of (PNP) NiCl with [ FeCp2](OTf) to its radical cation, [(PNP) NiCl](OTf) (OTf 1/4 triflate), a new low-energy feature emerges in the N K-edge XAS spectra. This feature is assigned as N 1s to a PNP-localized acceptor orbital exhibiting 27 similar to 2% N 2p aminyl radical character, obtained using the aforementioned nitrogen covalency calibration. Combined, these data showcase a direct spectroscopic means of identifying redox-active N-donor ligands and also estimating nitrogen 2p covalency of frontier molecular orbitals in transition metal complexes.<bold> </bold>
引用
收藏
页码:5044 / 5055
页数:12
相关论文
共 50 条
  • [21] Experimental and theoretical correlations between vanadium K-edge X-ray absorption and K emission spectra
    Rees, Julian A.
    Wandzilak, Aleksandra
    Maganas, Dimitrios
    Wurster, Nicole I. C.
    Hugenbruch, Stefan
    Kowalska, Joanna K.
    Pollock, Christopher J.
    Lima, Frederico A.
    Finkelstein, Kenneth D.
    DeBeer, Serena
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2016, 21 (5-6): : 793 - 805
  • [22] Using Iron L-Edge and Nitrogen K-Edge X-ray Absorption Spectroscopy to Improve the Understanding of the Electronic Structure of Iron Carbene Complexes
    Guo, Meiyuan
    Temperton, Robert
    D'Acunto, Giulio
    Johansson, Niclas
    Jones, Rosemary
    Handrup, Karsten
    Ringelband, Sven
    Prakash, Om
    Fan, Hao
    de Groot, Lisa H. M.
    Hlynsson, Valtyprimer Freyr
    Kaufhold, Simon
    Gordivska, Olga
    Velasquez Gonzalez, Nicolas
    Warnmark, Kenneth
    Schnadt, Joachim
    Persson, Petter
    Uhlig, Jens
    INORGANIC CHEMISTRY, 2024, 63 (27) : 12457 - 12468
  • [23] Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy
    Altman, Alison B.
    Pacold, Joseph I.
    Wang, Jian
    Lukens, Wayne W.
    Minasian, Stefan G.
    DALTON TRANSACTIONS, 2016, 45 (24) : 9948 - 9961
  • [24] Sulfur K-Edge X-ray Absorption Spectroscopy of Aryl and Aryl-Alkyl Sulfides
    Vogt, Linda I.
    Dolgova, Natalia V.
    Cotelesage, Julien J. H.
    Barney, Monica
    Sharifi, Samin
    Pickering, Ingrid J.
    George, Graham N.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (13) : 2861 - 2866
  • [25] Dithiolene radicals: Sulfur K-edge X-ray absorption spectroscopy and Harry's intuition
    Sproules, Stephen
    Wieghardt, Karl
    COORDINATION CHEMISTRY REVIEWS, 2011, 255 (7-8) : 837 - 860
  • [26] Alpha particle damage in biotite characterized by microfocus X-ray diffraction and Fe K-edge X-ray absorption spectroscopy
    Pattrick, R. A. D.
    Charnock, J. M.
    Geraki, T.
    Mosselmans, I. F. W.
    Pearce, C. I.
    Pimblott, S.
    Droop, G. T. R.
    MINERALOGICAL MAGAZINE, 2013, 77 (06) : 2867 - 2882
  • [27] K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites
    Baker, Michael L.
    Mara, Michael W.
    Yan, James J.
    Hodgson, Keith O.
    Hedman, Britt
    Solomon, Edward I.
    COORDINATION CHEMISTRY REVIEWS, 2017, 345 : 182 - 208
  • [28] In Solution Identification of the Lysine-Cysteine Redox Switch with a NOS Bridge in Transaldolase by Sulfur K-Edge X-ray Absorption Spectroscopy
    Tamhankar, Ashish
    Wensien, Marie
    Jannuzzi, Sergio A. V.
    Chatterjee, Sayanti
    Lassalle-Kaiser, Benedikt
    Tittmann, Kai
    Debeer, Serena
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (16) : 4263 - 4267
  • [29] Tetrathiafulvalene-2,3,6,7-tetrathiolate linker redox-state elucidation via S K-edge X-ray absorption spectroscopy
    Jiang, Ningxin
    Boyn, Jan-Niklas
    Ramanathan, Arun
    La Pierre, Henry S.
    Anderson, John S.
    CHEMICAL COMMUNICATIONS, 2023, 59 (62) : 9537 - 9540
  • [30] High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory
    Lima, Frederico A.
    Bjornsson, Ragnar
    Weyhermueller, Thomas
    Chandrasekaran, Perumalreddy
    Glatzel, Pieter
    Neese, Frank
    DeBeer, Serena
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (48) : 20911 - 20920