Effect of Climate Change on Runoff Generation: Application to Rift Valley Lakes Basin of Ethiopia

被引:25
作者
Wagesho, Negash [1 ]
Jain, M. K. [2 ]
Goel, N. K. [2 ]
机构
[1] Arba Minch Univ, Water Resources & Irrigat Engn Dept, Arba Minch, Ethiopia
[2] Indian Inst Technol, Dept Hydrol, Roorkee 247667, Uttar Pradesh, India
关键词
Climate change; Runoff; Africa; Lakes; Bias correction; Statistical downscaling method (SDSM); Ethiopia; 3 MOUNTAINOUS BASINS; GLOBAL MONSOON; MODEL OUTPUT; PRECIPITATION; RAINFALL; TEMPERATURE; IMPACTS; TRENDS; VARIABILITY; AFRICA;
D O I
10.1061/(ASCE)HE.1943-5584.0000647
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, an attempt has been made to investigate the potential impact of climate change on runoff generation at two agricultural watersheds. Climate change and key future signals of its variability were assessed using general circulation models (GCMs). Given that GCMs are operating at coarser resolution, the statistical downscaling model was applied to reduce large-scale atmospheric variables into localized weather variables from the Bjerknes Center for Climate Research-Bergen Climate Model 2.0 and Commonwealth Scientific and Industrial Research Organization (CSIRO) Mark (MK) 3.0 GCM outputs. As precipitation variables are composed of biases, both linear and power transformation bias correction methods were applied to obtain bias-corrected daily precipitation. Bias-corrected daily precipitation and temperature variables were used to simulate runoff for current and future climate scenarios using the Soil and Water Assessment Tool (SWAT) model. The statistical downscaling model, followed by bias correction, effectively reproduced the current weather variables. Increased extreme daily precipitation and temperature events prevailed for future scenarios. Dry spell length increased during the driest months and remained stable during wet seasons. There was no defined future precipitation change pattern. At two watersheds in the Rift Valley Lakes Basin in Ethiopia, the simulated runoff varied from to 18% and and 14%, respectively. Simulated average annual runoff showed slight variation between the GCMs at both watersheds. (C) 2013 American Society of Civil Engineers.
引用
收藏
页码:1048 / 1063
页数:16
相关论文
共 65 条
[1]  
Adler RF, 2003, J HYDROMETEOROL, V4, P1147, DOI 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO
[2]  
2
[3]  
[Anonymous], 1994, ELEMENTS GRAPHING DA
[4]  
[Anonymous], ARCGIS 9 3 COMP SOFT
[5]  
[Anonymous], STAT DOWNSC MOD SDSM
[6]  
[Anonymous], 60 COMM SCI IND RES
[7]  
[Anonymous], SURV ETH EC
[8]  
[Anonymous], 2006, Digital Image Processing
[9]  
[Anonymous], ERDAS IMAGINE 9 2 CO
[10]   Large area hydrologic modeling and assessment - Part 1: Model development [J].
Arnold, JG ;
Srinivasan, R ;
Muttiah, RS ;
Williams, JR .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 1998, 34 (01) :73-89