A note on the approximability of the toughness of graphs

被引:0
|
作者
Bazgan, C [1 ]
机构
[1] Univ Paris 09, LAMSADE, F-75775 Paris, France
关键词
toughness; graph; approximation algorithm; complexity;
D O I
10.1016/j.disc.2003.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, if NP not equal ZPP, for any epsilon > 0, the toughness of a graph with n vertices is not approximable in polynomial time within a factor of (1)/(2) (n/2)(1-epsilon). We give a 4-approximation for graphs with toughness bounded by (1)/(3) and we show that this result cannot be generalized to graphs with a bounded toughness. More exactly we prove that there is no constant approximation for graphs with bounded toughness, unless P = NP. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:215 / 218
页数:4
相关论文
共 50 条
  • [31] On approximability of linear ordering and related NP-optimization problems on graphs
    Mishra, S
    Sikdar, K
    DISCRETE APPLIED MATHEMATICS, 2004, 136 (2-3) : 249 - 269
  • [32] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Wang, Su-Fang
    Zhang, Wei
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 197 - 205
  • [33] A Toughness Condition for Fractional(k, m)-deleted Graphs Revisited
    Wei GAO
    Juan L.G.GUIRAO
    Yao Jun CHEN
    Acta Mathematica Sinica,English Series, 2019, (07) : 1227 - 1237
  • [34] A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited
    Gao, Wei
    Guirao, Juan L. G.
    Chen, Yao Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (07) : 1227 - 1237
  • [35] A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited
    Wei Gao
    Juan L. G. Guirao
    Yao Jun Chen
    Acta Mathematica Sinica, English Series, 2019, 35 : 1227 - 1237
  • [36] Toughness for Fractional (2, b, k)-Critical Covered Graphs
    Su-Fang Wang
    Wei Zhang
    Journal of the Operations Research Society of China, 2023, 11 : 197 - 205
  • [37] Toughness and Hamiltonicity of a class of planar graphs
    Gerlach, T
    DISCRETE MATHEMATICS, 2004, 286 (1-2) : 61 - 65
  • [38] Toughness, hamiltonicity and spectral radius in graphs
    Fan, Dandan
    Lin, Huiqiu
    Lu, Hongliang
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 110
  • [39] Toughness and Hamiltonicity of strictly chordal graphs
    Markenzon, Lilian
    Waga, Christina F. E. M.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2019, 26 (02) : 725 - 731
  • [40] Toughness and normalized Laplacian eigenvalues of graphs
    Huang, Xueyi
    Das, Kinkar Chandra
    Zhu, Shunlai
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 425