Parrondo games as lattice gas automata

被引:60
作者
Meyer, DA [1 ]
Blumer, H
机构
[1] Univ Calif San Diego, Dept Math, Project Geometry & Phys, La Jolla, CA 92093 USA
[2] Inst Phys Sci, Los Alamos, NM 87544 USA
关键词
Parrondo games; lattice gas automata; quantum games; quantum lattice gas automata; correlated random walk;
D O I
10.1023/A:1014566822448
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Parrondo games are coin flipping games with the surprising property that alternating plays of two losing games can produce a winning game. We show that this phenomenon can be modelled by probabilistic lattice gas automata. Furthermore, motivated by the recent introduction of quantum coin flipping games, we show that quantum lattice gas automata provide an interesting definition for quantum Parrondo games.
引用
收藏
页码:225 / 239
页数:15
相关论文
共 52 条
[11]   PATH-INTEGRAL SOLUTIONS OF WAVE-EQUATIONS WITH DISSIPATION [J].
DEWITTMORETTE, C ;
FOONG, SK .
PHYSICAL REVIEW LETTERS, 1989, 62 (19) :2201-2204
[12]   RANDOMLY RATTLED RATCHETS [J].
DOERING, CR .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1995, 17 (7-8) :685-697
[13]  
Dorit Aharonov, 2001, P 33 ANN ACM S THEOR, P50, DOI DOI 10.1145/380752.380758
[14]   OPTICAL THERMAL RATCHET [J].
FAUCHEUX, LP ;
BOURDIEU, LS ;
KAPLAN, PD ;
LIBCHABER, AJ .
PHYSICAL REVIEW LETTERS, 1995, 74 (09) :1504-1507
[15]  
FEYNMAN RP, 1963, FEYNMAN LECT PHYSICS, V1
[16]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN
[17]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[19]   Nonadiabatic quantum Brownian rectifiers [J].
Goychuk, I ;
Grifoni, M ;
Hanggi, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :649-652
[20]   TIME EVOLUTION OF A 2-DIMENSIONAL MODEL SYSTEM .1. INVARIANT STATES AND TIME CORRELATION-FUNCTIONS [J].
HARDY, J ;
POMEAU, Y ;
PAZZIS, OD .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (12) :1746-1759