Electrochemically Generated Copper Carbonyl for Selective Dimethyl Carbonate Synthesis

被引:19
作者
Davies, Bethan J. V. [1 ]
Saric, Manuel [1 ,2 ]
Figueiredo, Marta C. [1 ,5 ]
Schjodt, Niels C. [3 ]
Dahl, Soren [3 ]
Moses, Poul Georg [3 ]
Escudero-Escribano, Maria [1 ]
Arenz, Matthias [1 ,4 ]
Rossmeisl, Jan [1 ]
机构
[1] Univ Copenhagen, Dept Chem, Nanosci Ctr, Univ Pk 5, DK-2100 Copenhagen, Denmark
[2] Tech Univ Denmark, Dept Phys, Ctr Atom Scale Mat Design CAMd, Fys Vej Bldg 307, DK-2800 Lyngby, Denmark
[3] Haldor Topsoe A S, Nymollevej 55, DK-2800 Lyngby, Denmark
[4] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
[5] Avantium, Zekeringstr 29, NL-1014 BV Amsterdam, Netherlands
关键词
copper; dimethyl carbonate; electrosynthesis; spectroelectrochemistry; methanol; ELECTROLYTIC CARBONYLATION; INFRARED-SPECTROSCOPY; METHANOL; ANODE; CO; ELECTROOXIDATION; REDUCTION; CHEMISTRY; DMC;
D O I
10.1021/acscatal.8b03682
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of electrochemical synthesis routes for high-value chemicals could pave the way for a sustainable chemical industry based on electricity. Herein, the electrochemical synthesis of the industrially relevant and environmentally benign reagent, dimethyl carbonate (DMC), is investigated. By utilizing a combination of electrochemical techniques, in situ infrared spectroscopy, and headspace-gas chromatography-mass spectrometry we show production and spectroelectrochemical evidence for the synthesis of DMC via an electrochemically generated copper carbonyl species. The formation of the copper carbonyl has close to 100% current efficiency, in the applied potential range of 0.1-0.4 V vs SCE. Subsequent formation of DMC occurs with a slow reaction time on the order of 30-40 days. Relative to potential coproducts, the reaction is highly selective for DMC. Optimization of the reaction may lead to a viable method of DMC production.
引用
收藏
页码:859 / 866
页数:15
相关论文
共 40 条
[1]   Structure- and Electrolyte-Sensitivity in CO2 Electroreduction [J].
Aran-Ais, Rosa M. ;
Gao, Dunfeng ;
Roldan Cuenya, Beatriz .
ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (11) :2906-2917
[2]   Dimethylcarbonate: a modern green reagent and solvent [J].
Arico, F. ;
Tundo, P. .
RUSSIAN CHEMICAL REVIEWS, 2010, 79 (06) :479-489
[3]   Oxidative IR Spectroelectrochemistry of Copper in Methanol Containing Carbon Monoxide [J].
Brooksby, Paula A. ;
McQuillan, A. James .
LANGMUIR, 2014, 30 (47) :14337-14342
[4]   Organic Electrosynthesis: From Laboratorial Practice to Industrial Applications [J].
Cardoso, David S. P. ;
Sljukic, Biljana ;
Santos, Diogo M. F. ;
Sequeira, Cesar A. C. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2017, 21 (09) :1213-1226
[5]  
Centi G., 2009, SUSTAINABLE IND CHEM, P599
[6]   ANODIC SYNTHESIS OF ORGANIC CARBONATES [J].
CIPRIS, D ;
MADOR, IL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (12) :1954-1959
[7]  
Di M. N., 1991, European Patent, Patent No. [EP0460732A1, 0460732A1]
[8]  
ELHALEEM SMA, 1981, J ELECTROANAL CHEM, V117, P309
[9]   Spectro-Electrochemical Examination of the Formation of Dimethyl Carbonate from CO and Methanol at Different Electrode Materials [J].
Figueiredo, Marta C. ;
Trieu, Vinh ;
Eiden, Stefanie ;
Koper, Marc T. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (41) :14693-14698
[10]   Organic electrosynthesis: a promising green methodology in organic chemistry [J].
Frontana-Uribe, Bernardo A. ;
Little, R. Daniel ;
Ibanez, Jorge G. ;
Palma, Agustin ;
Vasquez-Medrano, Ruben .
GREEN CHEMISTRY, 2010, 12 (12) :2099-2119