Exact synchronization bound for coupled time-delay systems

被引:2
|
作者
Senthilkumar, D. V. [1 ]
Pesquera, Luis [2 ]
Banerjee, Santo [3 ,4 ]
Ortin, Silvia [2 ]
Kurths, J. [1 ,5 ,6 ]
机构
[1] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[2] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain
[3] Univ Putra Malaysia, Inst Math Res, Kuala Lumpur, Malaysia
[4] Int Sci Assoc, Dept Complex & Network Dynam, Ankara, Turkey
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[6] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB9 1FX, Scotland
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 04期
关键词
D O I
10.1103/PhysRevE.87.044902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system. DOI: 10.1103/PhysRevE.87.044902
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Time-Delay Systems: Modeling, Analysis, Estimation, Control, and Synchronization
    Boubaker, Olfa
    Balas, Valentina E.
    Benzaouia, Abdellah
    Chaabane, Mohamed
    Mahmoud, Magdi S.
    Zhu, Quanmin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017 : 1 - 3
  • [42] Impulsive synchronization of fractional order chaotic systems with time-delay
    Li, Dong
    Zhang, Xingpeng
    NEUROCOMPUTING, 2016, 216 : 39 - 44
  • [43] Global generalized synchronization in networks of different time-delay systems
    Senthilkumar, D. V.
    Suresh, R.
    Lakshmanan, M.
    Kurths, J.
    EPL, 2013, 103 (05)
  • [44] Adaptive Synchronization of Time-Delay Chaotic Systems with Intermittent Control
    Wang, Yuangan
    Li, Dong
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (05) : 459 - 464
  • [45] A revisit to synchronization of Lurie systems with time-delay feedback control
    Liu, Xian
    Gao, Qing
    Niu, Liyong
    NONLINEAR DYNAMICS, 2010, 59 (1-2) : 297 - 307
  • [46] Robust synchronization of chaotic systems with unmatched disturbance and time-delay
    Ma, Yuechao
    Jing, Yanhui
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (03) : 929 - 939
  • [47] Transition from phase to generalized synchronization in time-delay systems
    Senthilkumar, D. V.
    Lakshmanan, M.
    Kurths, J.
    CHAOS, 2008, 18 (02)
  • [48] A note on chaotic synchronization of time-delay secure communication systems
    Li, Demin
    Wang, Zidong
    Zhou, Jie
    Fang, Jian'an
    Ni, Jinjin
    CHAOS SOLITONS & FRACTALS, 2008, 38 (04) : 1217 - 1224
  • [49] Synchronization and Circuit Experiment Simulation of Chaotic Time-delay Systems
    Zhang Xiao-hong
    Cui Zhi-yong
    Zhu Yuan-yuan
    PROCEEDINGS OF THE 2009 PACIFIC-ASIA CONFERENCE ON CIRCUITS, COMMUNICATIONS AND SYSTEM, 2009, : 781 - 784
  • [50] Characteristics and synchronization of time-delay systems driven by a common noise
    D.V. Senthilkumar
    J. Kurths
    The European Physical Journal Special Topics, 2010, 187 : 87 - 93