Exact synchronization bound for coupled time-delay systems

被引:2
|
作者
Senthilkumar, D. V. [1 ]
Pesquera, Luis [2 ]
Banerjee, Santo [3 ,4 ]
Ortin, Silvia [2 ]
Kurths, J. [1 ,5 ,6 ]
机构
[1] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[2] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain
[3] Univ Putra Malaysia, Inst Math Res, Kuala Lumpur, Malaysia
[4] Int Sci Assoc, Dept Complex & Network Dynam, Ankara, Turkey
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[6] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB9 1FX, Scotland
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 04期
关键词
D O I
10.1103/PhysRevE.87.044902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system. DOI: 10.1103/PhysRevE.87.044902
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Stability of synchronization in coupled time-delay systems using Krasovskii-Lyapunov theory
    Senthilkumar, D. V.
    Kurths, J.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2009, 79 (06):
  • [22] Partial synchronization in diffusively time-delay coupled oscillator networks
    Steur, Erik
    Oguchi, Toshiki
    van Leeuwen, Cees
    Nijmeijer, Henk
    CHAOS, 2012, 22 (04)
  • [23] The synchronization for time-delay of linearly bidirectional coupled chaotic system
    Yu, Yongguang
    CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1197 - 1203
  • [24] Global phase synchronization in an array of time-delay systems
    Suresh, R.
    Senthilkumar, D. V.
    Lakshmanan, M.
    Kurths, J.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [25] Adaptive synchronization for a class of time-delay chaotic systems
    Zhang, Hong
    Chen, Tian-Qi
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2005, 27 (04): : 708 - 710
  • [26] Synchronization in networks of chaotic systems with time-delay coupling
    Oguchi, Toshiki
    Nijmeijer, Henk
    Yamamoto, Takashi
    CHAOS, 2008, 18 (03)
  • [27] On Exact Controllability of Time-Delay Systems of Neutral Type
    R. Rabah
    G. M. Sklyar
    P. Yu. Barkhayev
    Ukrainian Mathematical Journal, 2016, 68 : 910 - 927
  • [28] Laminar Chaos in Coupled Time-Delay Systems
    Kulminskiy, D. D.
    Ponomarenko, V. I.
    Prokhorov, M. D.
    TECHNICAL PHYSICS LETTERS, 2024, 50 (02) : 138 - 141
  • [29] On Exact Controllability of Time-Delay Systems of Neutral Type
    Rabah, R.
    Sklyar, G. M.
    Barkhayev, P. Yu
    UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (06) : 910 - 927
  • [30] SUBOPTIMAL CONTROL OF COUPLED TIME-DELAY SYSTEMS
    JAMSHIDI, M
    INTERNATIONAL JOURNAL OF CONTROL, 1973, 17 (05) : 995 - 1008