Exact synchronization bound for coupled time-delay systems

被引:2
|
作者
Senthilkumar, D. V. [1 ]
Pesquera, Luis [2 ]
Banerjee, Santo [3 ,4 ]
Ortin, Silvia [2 ]
Kurths, J. [1 ,5 ,6 ]
机构
[1] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[2] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain
[3] Univ Putra Malaysia, Inst Math Res, Kuala Lumpur, Malaysia
[4] Int Sci Assoc, Dept Complex & Network Dynam, Ankara, Turkey
[5] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[6] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB9 1FX, Scotland
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 04期
关键词
D O I
10.1103/PhysRevE.87.044902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We obtain an exact bound for synchronization in coupled time-delay systems using the generalized Halanay inequality for the general case of time-dependent delay, coupling, and coefficients. Furthermore, we show that the same analysis is applicable to both uni- and bidirectionally coupled time-delay systems with an appropriate evolution equation for their synchronization manifold, which can also be defined for different types of synchronization. The exact synchronization bound assures an exponential stabilization of the synchronization manifold which is crucial for applications. The analytical synchronization bound is independent of the nature of the modulation and can be applied to any time-delay system satisfying a Lipschitz condition. The analytical results are corroborated numerically using the Ikeda system. DOI: 10.1103/PhysRevE.87.044902
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Synchronization of coupled time-delay systems: analytical estimations
    Pyragas, K.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58 (3-A):
  • [2] Synchronization of coupled time-delay systems: Analytical estimations
    Pyragas, K
    PHYSICAL REVIEW E, 1998, 58 (03) : 3067 - 3071
  • [3] Synchronization of time-delay systems
    Phys Rev E., 4 (R4072):
  • [4] Synchronization of time-delay systems
    Bunner, MJ
    Just, W
    PHYSICAL REVIEW E, 1998, 58 (04) : R4072 - R4075
  • [5] Phase synchronization in unidirectionally coupled Ikeda time-delay systems
    D.V. Senthilkumar
    M. Lakshmanan
    J. Kurths
    The European Physical Journal Special Topics, 2008, 164 : 35 - 44
  • [6] Complete chaotic synchronization in mutually coupled time-delay systems
    Landsman, Alexandra S.
    Schwartz, Ira B.
    PHYSICAL REVIEW E, 2007, 75 (02):
  • [7] Intermittency transition to generalized synchronization in coupled time-delay systems
    Senthilkumar, D. V.
    Lakshmanan, M.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [8] Phase synchronization in unidirectionally coupled Ikeda time-delay systems
    Senthilkumar, D. V.
    Lakshmanan, M.
    Kurths, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 164 (1): : 35 - 44
  • [9] Delay-independent Synchronization in Networks of Time-delay Coupled Systems with Uncertainties
    Miyamoto, Kota
    Ryono, Koki
    Oguchi, Toshiki
    IFAC PAPERSONLINE, 2018, 51 (33): : 211 - 216
  • [10] A constructional method for generalized synchronization of coupled time-delay chaotic systems
    Xiang, Hui-fen
    Li, Gao-ping
    CHAOS SOLITONS & FRACTALS, 2009, 41 (04) : 1849 - 1853