Modifications of the Bekenstein bound from dimensional reduction of covariant entropy bound

被引:0
|
作者
Yee, HU [1 ]
机构
[1] Korea Inst Adv Study, Seoul 130722, South Korea
来源
PARTICLES, STRINGS, AND COSMOLOGY | 2005年 / 805卷
关键词
covariant entropy bound; Bekenstein bound; Bousso bound;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider dimensional reduction of the covariant entropy bound from D + S-1 dimensional geometry of M x S-1 to the D dimensional geometry M. With a warping factor, the local Bekenstein bound in D + 1 dimensions leads to a more refined form of the local Bekenstein bound from the D dimensional view point. With this new local Bekenstein bound, it is possible to saturate the lightlike holography bound even with nonvanishing expansion rate. With a Kaluza-Klein gauge field, the dimensional reduction implies a stronger bound where the energy momentum tensor contribution is replaced by the energy momentum tensor with the electromagnetic contribution subtracted.
引用
收藏
页码:387 / 390
页数:4
相关论文
共 50 条
  • [1] Holography, dimensional reduction and the Bekenstein bound
    Bak, D
    Yee, HU
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (04):
  • [2] Relative entropy and the Bekenstein bound
    Casini, H.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (20)
  • [3] A violation of the covariant entropy bound?
    Masoumi, Ali
    Mathur, Samir D.
    PHYSICAL REVIEW D, 2015, 91 (08):
  • [4] Light sheets and Bekenstein's entropy bound
    Bousso, R
    PHYSICAL REVIEW LETTERS, 2003, 90 (12)
  • [5] Bound states and the Bekenstein bound
    Bousso, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (02):
  • [6] Note on bound states and the Bekenstein bound
    Marolf, D
    Roiban, R
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (08):
  • [7] A geometrical origin for the covariant entropy bound
    Casini, H
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (13) : 2509 - 2526
  • [8] The covariant entropy bound in gravitational collapse
    Gao, SJ
    Lemos, JPS
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (04):
  • [9] Bekenstein bound from the Pauli principle
    Acquaviva, G.
    Iorio, A.
    Smaldone, L.
    PHYSICAL REVIEW D, 2020, 102 (10)
  • [10] A NOTE ON THE CONNECTION BETWEEN THE UNIVERSAL RELAXATION BOUND AND THE COVARIANT ENTROPY BOUND
    Pesci, Alessandro
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (05): : 831 - 835