Numerical modeling of laser tunneling ionization in particle-in-cell codes with a laser envelope model

被引:8
|
作者
Massimo, F. [1 ]
Beck, A. [1 ]
Derouillat, J. [2 ]
Zemzemi, I [1 ]
Specka, A. [1 ]
机构
[1] CNRS IN2P3, Ecole Polytech, Lab Leprince Ringuet, F-91128 Palaiseau, France
[2] Univ Paris Saclay, Univ Paris Sud, Maison Simulat, CEA,CNRS,UVSQ, F-91191 Gif Sur Yvette, France
关键词
WAKEFIELD ACCELERATION; INTENSE; PULSES; ELECTRONS; BEAMS;
D O I
10.1103/PhysRevE.102.033204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The resources needed for particle-in-cell simulations of laser wakefield acceleration can be greatly reduced in many cases of interest using an envelope model. However, the inclusion of tunneling ionization in this time-averaged treatment of laser-plasma acceleration is not straightforward, since the statistical features of the electron beams obtained through ionization should ideally be reproduced without resolving the high-frequency laser oscillations. In this context, an extension of an already known envelope ionization procedure is proposed, valid also for laser pulses with higher intensities, which consists in adding the initial longitudinal drift to the newly created electrons within the laser pulse ionizing the medium. The accuracy of the proposed procedure is shown with both linear and circular polarization in a simple benchmark where a nitrogen slab is ionized by a laser pulse and in a more complex benchmark of laser plasma acceleration with ionization injection in the nonlinear regime. With this addition to the envelope ionization algorithm, the main phase space properties of the bunches injected in a plasma wakefield with ionization by a laser (charge, average energy, energy spread, rms sizes, and normalized emittance) can be estimated with accuracy comparable to a nonenvelope simulation with significantly reduced resources, even in cylindrical geometry. Through this extended algorithm, preliminary studies of ionization injection in laser wakefield acceleration can be easily carried out even on a laptop.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical modeling of laser tunneling ionization in explicit particle-in-cell codes
    Chen, M.
    Cormier-Michel, E.
    Geddes, C. G. R.
    Bruhwiler, D. L.
    Yu, L. L.
    Esarey, E.
    Schroeder, C. B.
    Leemans, W. P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 236 : 220 - 228
  • [2] Numerical simulation of laser tunneling ionization in explicit particle-in-cell codes
    Chen, M.
    Cormier-Michel, E.
    Geddes, C. G. R.
    Bruhwiler, David L.
    Yu, L. L.
    Esarey, E.
    Schroeder, C. B.
    Leemans, W. P.
    ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 911 - 916
  • [3] Improved modellisation of laser-particle interaction in particle-in-cell simulations
    Bourgeois, Pierre-Louis
    Davoine, Xavier
    JOURNAL OF PLASMA PHYSICS, 2023, 89 (02)
  • [4] Modeling laser wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames
    Martins, S. F.
    Fonseca, R. A.
    Vieira, J.
    Silva, L. O.
    Lu, W.
    Mori, W. B.
    PHYSICS OF PLASMAS, 2010, 17 (05)
  • [5] A fast and accurate numerical implementation of the envelope model for laser-plasma dynamics
    Terzani, Davide
    Londrillo, Pasquale
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 242 : 49 - 59
  • [6] Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition
    Lifschitz, A. F.
    Davoine, X.
    Lefebvre, E.
    Faure, J.
    Rechatin, C.
    Malka, V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (05) : 1803 - 1814
  • [7] Propagation of numerical noise in particle-in-cell tracking
    Kesting, Frederik
    Franchetti, Giuliano
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2015, 18 (11):
  • [8] Modeling of axion and electromagnetic fields interaction in particle-in-cell simulations
    An, Xiangyan
    Chen, Min
    Liu, Jianglai
    Sheng, Zhengming
    Zhang, Jie
    MATTER AND RADIATION AT EXTREMES, 2024, 9 (06)
  • [9] Target normal sheath acceleration and laser wakefield acceleration particle-in-cell simulations performance on CPU & GPU architectures for high-power laser systems
    Tazes, I
    Ong, J. F.
    Tesileanu, O.
    Tanaka, K. A.
    Papadogiannis, N. A.
    Tatarakis, M.
    Dimitriou, V
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (09)
  • [10] Pseudospectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with particle-in-cell codes
    Blaclard, G.
    Vincenti, H.
    Lehe, R.
    Vay, J. L.
    PHYSICAL REVIEW E, 2017, 96 (03)