ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis

被引:151
作者
Jiang, Caifu [1 ]
Belfield, Eric J. [1 ]
Mithani, Aziz [1 ,2 ]
Visscher, Anne [1 ]
Ragoussis, Jiannis [3 ]
Mott, Richard [3 ]
Smith, J. Andrew C. [1 ]
Harberd, Nicholas P. [1 ]
机构
[1] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England
[2] Lahore Univ Management Sci, Dept Biol, Syed Babar Ali Sch Sci & Engn, Sect U,DHA, Lahore, Pakistan
[3] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford OX1 3RB, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
Arabidopsis; Na homeostasis; NADPH oxidase; ROS; salt tolerance; NADPH OXIDASE ATRBOHD; SALT TOLERANCE; SALINITY TOLERANCE; MUTANTS DEFICIENT; PROTEIN-KINASE; CELL-DEATH; OXYGEN; STRESS; TRANSPORT; SOS1;
D O I
10.1038/emboj.2012.273
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sodium (Na) is ubiquitous in soils, and is transported to plant shoots via transpiration through xylem elements in the vascular tissue. However, excess Na is damaging. Accordingly, control of xylem-sap Na concentration is important for maintenance of shoot Na homeostasis, especially under Na stress conditions. Here we report that shoot Na homeostasis of Arabidopsis thaliana plants grown in saline soils is conferred by reactive oxygen species (ROS) regulation of xylem-sap Na concentrations. We show that lack of A. thaliana respiratory burst oxidase protein F (AtrbohF; an NADPH oxidase catalysing ROS production) causes hypersensitivity of shoots to soil salinity. Lack of AtrbohF-dependent salinity-induced vascular ROS accumulation leads to increased Na concentrations in root vasculature cells and in xylem sap, thus causing delivery of damaging amounts of Na to the shoot. We also show that the excess shoot Na delivery caused by lack of AtrbohF is dependent upon transpiration. We conclude that AtrbohF increases ROS levels in wild-type root vasculature in response to raised soil salinity, thereby limiting Na concentrations in xylem sap, and in turn protecting shoot cells from transpiration-dependent delivery of excess Na. The EMBO Journal (2012) 31, 4359-4370. doi:10.1038/emboj.2012.273; Published online 12 October 2012
引用
收藏
页码:4359 / 4370
页数:12
相关论文
共 58 条
  • [1] Integration of plant responses to environmentally activated phytohormonal signals
    Achard, P
    Cheng, H
    De Grauwe, L
    Decat, J
    Schoutteten, H
    Moritz, T
    Van Der Straeten, D
    Peng, JR
    Harberd, NP
    [J]. SCIENCE, 2006, 311 (5757) : 91 - 94
  • [2] Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species
    Achard, Patrick
    Renou, Jean-Pierre
    Berthome, Richard
    Harberd, Nicholas P.
    Genschik, Pascal
    [J]. CURRENT BIOLOGY, 2008, 18 (09) : 656 - 660
  • [3] Amtmann A, 1999, ADV BOT RES, V29, P75
  • [4] A Coastal Cline in Sodium Accumulation in Arabidopsis thaliana Is Driven by Natural Variation of the Sodium Transporter AtHKT1;1
    Baxter, Ivan
    Brazelton, Jessica N.
    Yu, Danni
    Huang, Yu S.
    Lahner, Brett
    Yakubova, Elena
    Li, Yan
    Bergelson, Joy
    Borevitz, Justin O.
    Nordborg, Magnus
    Vitek, Olga
    Salt, David E.
    [J]. PLOS GENETICS, 2010, 6 (11):
  • [5] Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana
    Belfield, Eric J.
    Gan, Xiangchao
    Mithani, Aziz
    Brown, Carly
    Jiang, Caifu
    Franklin, Keara
    Alvey, Elizabeth
    Wibowo, Anjar
    Jung, Marko
    Bailey, Kit
    Kalwani, Sharan
    Ragoussis, Jiannis
    Mott, Richard
    Harberd, Nicholas P.
    [J]. GENOME RESEARCH, 2012, 22 (07) : 1306 - 1315
  • [6] A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells
    Carol, RJ
    Takeda, S
    Linstead, P
    Durrant, MC
    Kakesova, H
    Derbyshire, P
    Drea, S
    Zarsky, V
    Dolan, L
    [J]. NATURE, 2005, 438 (7070) : 1013 - 1016
  • [7] Dual action of the active oxygen species during plant stress responses
    Dat, J
    Vandenabeele, S
    Vranová, E
    Van Montagu, M
    Inzé, D
    Van Breusegem, F
    [J]. CELLULAR AND MOLECULAR LIFE SCIENCES, 2000, 57 (05) : 779 - 795
  • [8] The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis
    Davenport, Romola Jane
    Munoz-Mayor, Alicia
    Jha, Deepa
    Essah, Pauline Adobea
    Rus, Ana
    Tester, Mark
    [J]. PLANT CELL AND ENVIRONMENT, 2007, 30 (04) : 497 - 507
  • [9] Nonselective cation channels in plants
    Demidchik, V
    Davenport, RJ
    Tester, M
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, 2002, 53 : 67 - 107
  • [10] Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis
    Desikan, Radhika
    Last, Kathryn
    Harrett-Williams, Rhian
    Tagliavia, Cecilia
    Harter, Klaus
    Hooley, Richard
    Hancock, John T.
    Neill, Steven J.
    [J]. PLANT JOURNAL, 2006, 47 (06) : 907 - 916