Online analysis of voltage security in a microgrid using convolutional neural networks

被引:0
|
作者
Wang, Yajun [1 ]
Pulgar-Painemal, Hector [1 ]
Sun, Kai [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
来源
2017 IEEE POWER & ENERGY SOCIETY GENERAL MEETING | 2017年
基金
美国国家科学基金会;
关键词
Voltage security; microgrid; convolutional neural networks; machine learning;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Although connecting a microgrid to modern power systems can alleviate issues arising from a large penetration of distributed generation, it can also cause severe voltage instability problems. This paper presents an online method to analyze voltage security in a microgrid using convolutional neural networks. To transform the traditional voltage stability problem into a classification problem, three steps are considered: 1) creating data sets using offline simulation results; 2) training the model with dimensional reduction and convolutional neural networks; 3) testing the online data set and evaluating performance. A case study in the modified IEEE 14-bus system shows the accuracy of the proposed analysis method increases by 6% compared to back-propagation neural network and has better performance than decision tree and support vector machine. The proposed algorithm has great potential in future applications.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Assets Predictive Maintenance Using Convolutional Neural Networks
    Silva, Willamos
    Capretz, Miriam
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 59 - 66
  • [32] Activity landscape image analysis using convolutional neural networks
    Iqbal, Javed
    Vogt, Martin
    Bajorath, Juergen
    JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
  • [33] Financial Time-series Data Analysis using Deep Convolutional Neural Networks
    Chen, Jou-Fan
    Chen, Wei-Lun
    Huang, Chun-Ping
    Huang, Szu-Hao
    Chen, An-Pin
    2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD), 2016, : 87 - 92
  • [34] Surface defect detection of voltage-dependent resistors using convolutional neural networks
    Tiejun Yang
    Shan Peng
    Lin Huang
    Multimedia Tools and Applications, 2020, 79 : 6531 - 6546
  • [35] Surface defect detection of voltage-dependent resistors using convolutional neural networks
    Yang, Tiejun
    Peng, Shan
    Huang, Lin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (9-10) : 6531 - 6546
  • [36] Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks
    Gianoglio, Christian
    Ragusa, Edoardo
    Gastaldo, Paolo
    Gallesi, Federico
    Guastavino, Francesco
    ENERGIES, 2021, 14 (15)
  • [37] A Novel Online Ensemble Convolutional Neural Networks for Streaming Data
    Xuan Cuong Pham
    Thi Thu Thuy Nguyen
    Liew, Alan Wee-Chung
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 199 - 210
  • [38] Pansharpening by Convolutional Neural Networks
    Masi, Giuseppe
    Cozzolino, Davide
    Verdoliva, Luisa
    Scarpa, Giuseppe
    REMOTE SENSING, 2016, 8 (07)
  • [39] Fast battery capacity estimation using convolutional neural networks
    Li, Yihuan
    Li, Kang
    Liu, Xuan
    Zhang, Li
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2020,
  • [40] Analysis of Control Flow Graphs Using Graph Convolutional Neural Networks
    Philipp, Patrick
    Georgi, Rafael X. Morales
    Beyerer, Juergen
    Robert, Sebastian
    2019 6TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI 2019), 2019, : 73 - 77