The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere

被引:60
作者
Brauchart, J. S. [1 ]
Hardin, D. P. [2 ]
Saff, E. B. [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
来源
RECENT ADVANCES IN ORTHOGONAL POLYNOMIALS, SPECIAL FUNCTIONS, AND THEIR APPLICATIONS | 2011年 / 578卷
基金
美国国家科学基金会;
关键词
Dirichlet function; Logarithmic Energy; Riemann Zeta function; Riesz energy; MINIMAL DISCRETE ENERGY; POINTS; DISTANCES; SUMS; CONFIGURATIONS; SURFACE; BOUNDS;
D O I
10.1090/conm/578/11483
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We survey known results and present estimates and conjectures for the next-order term in the asymptotics of the optimal logarithmic energy and Riesz s-energy of N points on the unit sphere in Rd+1, d >= 1. The conjectures are based on analytic continuation assumptions (with respect to s) for the coefficients in the asymptotic expansion (as N -> infinity) of the optimal s-energy.
引用
收藏
页码:31 / +
页数:4
相关论文
共 51 条