Adaptive automatic data analysis in full-field fringe pattern based optical metrology

被引:0
作者
Trusiak, Maciej [1 ]
Patorski, Krzysztof [1 ]
Sluzewski, Lukasz [1 ]
Pokorski, Krzysztof [1 ]
Sunderland, Zofia [1 ]
机构
[1] Warsaw Univ Technol, Inst Micromech & Photon, 8 Sw A Boboli St, PL-02505 Warsaw, Poland
来源
20TH SLOVAK-CZECH-POLISH OPTICAL CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS | 2016年 / 10142卷
关键词
fringe pattern analysis; empirical mode decomposition; Hilbert transform; Hilbert-Huang transform; phase retrieval; interferometry; quantitative phase imaging; adaptive data analysis; EMPIRICAL MODE DECOMPOSITION; WINDOWED FOURIER-TRANSFORM; GRAM-SCHMIDT ORTHONORMALIZATION; NOISE-REDUCTION; TALBOT INTERFEROMETRY; NATURAL DEMODULATION; PHASE EXTRACTION; TIME-AVERAGE; S-TRANSFORM; ALGORITHM;
D O I
10.1117/12.2263355
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fringe pattern processing and analysis is an important task of full-field optical measurement techniques like interferometry, digital holography, structural illumination and moire. In this contribution we present several adaptive automatic data analysis solutions based on the notion of Hilbert-Huang transform for measurand retrieval via fringe pattern phase and amplitude demodulation. The Hilbert-Huang transform consists of 2D empirical mode decomposition algorithm and Hilbert spiral transform analysis. Empirical mode decomposition adaptively dissects a meaningful number of same-scale subimages from the analyzed pattern - it is a data-driven method. Appropriately managing this set of unique subimages results in a very powerful fringe pre-filtering tool. Phase/amplitude demodulation is performed using Hilbert spiral transform aided by the local fringe orientation estimator. We describe several optical measurement techniques for technical and biological objects characterization basing on the especially tailored Hilbert-Huang algorithm modifications for fringe pattern denoising, detrending and amplitude/phase demodulation.
引用
收藏
页数:12
相关论文
共 70 条
  • [1] [Anonymous], 1993, Interferogram analysis, digital fringe pattern measurement techniques
  • [2] Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition
    Belen Bernini, Maria
    Federico, Alejandro
    Kaufmann, Guillermo H.
    [J]. APPLIED OPTICS, 2008, 47 (14) : 2592 - 2598
  • [3] Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform
    Bernini, Maria B.
    Federico, Alejandro
    Kaufmann, Guillermo H.
    [J]. APPLIED OPTICS, 2009, 48 (36) : 6862 - 6869
  • [4] A novel approach of fast and adaptive bidimensional empirical mode decomposition
    Bhuiyan, Sharif M. A.
    Adhami, Reza R.
    Khan, Jesmin F.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1313 - 1316
  • [5] BIDIMENSIONAL EMPIRICAL MODE DECOMPOSITION USING VARIOUS INTERPOLATION TECHNIQUES
    Bhuiyan, Sharif M. A.
    Attoh-Okine, Nii O.
    Barner, Kenneth E.
    Ayenu-Prah, Albert Y.
    Adhami, Reza R.
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2009, 1 (02) : 309 - 338
  • [6] Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation
    Bhuiyan, Sharif M. A.
    Adhami, Reza R.
    Khan, Jesmin F.
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2008, 2008 (1)
  • [7] N-point spatial phase-measurement techniques for non-destructive testing
    Creath, K
    Schmit, J
    [J]. OPTICS AND LASERS IN ENGINEERING, 1996, 24 (5-6) : 365 - 379
  • [8] A fast algorithm for bidimensional EMD
    Damerval, C
    Meignen, S
    Perrier, V
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2005, 12 (10) : 701 - 704
  • [9] Spatial carrier phase-shifting algorithm based on principal component analysis method
    Du, Yongzhao
    Feng, Guoying
    Li, Hongru
    Vargas, J.
    Zhou, Shouhuan
    [J]. OPTICS EXPRESS, 2012, 20 (15): : 16471 - 16479
  • [10] Phase recovery from interference fringes by using S-transform
    Dursun, Ali
    Sarac, Zehra
    Topkara, Milya Sarac
    Ozder, Serhat
    Ecevit, F. Necati
    [J]. MEASUREMENT, 2008, 41 (04) : 403 - 411