Temporally correlated zero-range process with open boundaries: Steady state and fluctuations

被引:7
作者
Cavallaro, Massimo [1 ]
Mondragon, Raul J. [2 ]
Harris, Rosemary J. [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
CONDENSATION; SYMMETRY; DYNAMICS; MODEL;
D O I
10.1103/PhysRevE.92.022137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study an open-boundary version of the on-off zero-range process introduced in Hirschberg et al. [Phys. Rev. Lett. 103, 090602 (2009)]. This model includes temporal correlations which can promote the condensation of particles, a situation observed in real-world dynamics. We derive the exact solution for the steady state of the one-site system, as well as a mean-field approximation for larger one-dimensional lattices, and also explore the large deviation properties of the particle current. Analytical and numerical calculations show that, although the particle distribution is well described by an effective Markovian solution, the probability of rare currents differs from the memoryless case. In particular, we find evidence for a memory-induced dynamical phase transition.
引用
收藏
页数:18
相关论文
共 49 条
  • [1] The fluctuation theorem for currents in semi-Markov processes
    Andrieux, David
    Gaspard, Pierre
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [2] Shepherd model for knot-limited polymer ejection from a capsid
    Antal, Tibor
    Krapivsky, P. L.
    Redner, S.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2009, 261 (03) : 488 - 493
  • [3] Communication in networks with hierarchical branching
    Arenas, A
    Díaz-Guilera, A
    Guimerà, R
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (14) : 3196 - 3199
  • [4] Bose-Einstein condensation in complex networks
    Bianconi, G
    Barabási, AL
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (24) : 5632 - 5635
  • [5] Wealth condensation in a simple model of economy
    Bouchaud, JP
    Mézard, M
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 282 (3-4) : 536 - 545
  • [6] Wealth condensation in pareto macroeconomics
    Burda, Z.
    Johnston, D.
    Jurkiewicz, J.
    Kamiński, M.
    Nowak, M.A.
    Papp, G.
    Zahed, I.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (02): : 1 - 026102
  • [7] Non-Equilibrium Statistical Physics of Currents in Queuing Networks
    Chernyak, Vladimir Y.
    Chertkov, Michael
    Goldberg, David A.
    Turitsyn, Konstantin
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 140 (05) : 819 - 845
  • [8] Spatiotemporally Complete Condensation in a Non-Poissonian Exclusion Process
    Concannon, Robert J.
    Blythe, Richard A.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (05)
  • [9] Congestion phenomena on complex networks
    De Martino, Daniele
    Dall'Asta, Luca
    Bianconi, Ginestra
    Marsili, Matteo
    [J]. PHYSICAL REVIEW E, 2009, 79 (01):
  • [10] Matrix measures and random walks with a block tridiagonal transition matrix
    Dette, Holger
    Reuther, Bettina
    Studden, W. J.
    Zygmunt, M.
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 117 - 142