Entropy of orthogonal matrices and minimum distance orthostochastic matrices from the uniform van der Waerden matrices

被引:3
作者
Arasu, K. T. [1 ]
Mohan, Manil T. [2 ]
机构
[1] Wright State Univ, Dept Math & Stat, 3640 Colonel Glenn, Dayton, OH 45435 USA
[2] IIT Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Bistochastic matrix; Orthostochastic matrix; Orthogonal matrix; Hadamard matrix; Shannon entropy; Conference matrix; Weighing matrix; Optimization; HADAMARD-MATRICES; WEIGHING MATRICES;
D O I
10.1016/j.disopt.2018.10.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article we formulate an optimization problem of minimizing the distance from the uniform van der Waerden matrices to orthostochastic matrices of different orders. We find a lower bound for the number of stationary points of the minimization problem, which is connected to the number of possible partitions of a natural number. The existence of Hadamard matrices ensures the existence of global minimum orthostochastic matrices for such problems. The local minimum orthostochastic matrices have been obtained for all other orders except for 11 and 19. We explore the properties of Hadamard, conference and weighing matrices to obtain such minimizing orthostochastic matrices. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 144
页数:30
相关论文
共 39 条
  • [1] OPTIMIZATION PROBLEMS WITH ORTHOGONAL MATRIX CONSTRAINTS
    Arasu, K. T.
    Mohan, Manil T.
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2018, 8 (04): : 413 - 440
  • [2] Arasu K. T., 2018, ENTROPY OPTIMAL ORTH
  • [3] Arasu KT, 1996, J COMB DES, V4, P439
  • [4] PERMUTATION MATRICES WHOSE CONVEX COMBINATIONS ARE ORTHOSTOCHASTIC
    AUYEUNG, YH
    CHENG, CM
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 150 : 243 - 253
  • [5] 3X3 ORTHOSTOCHASTIC MATRICES AND THE CONVEXITY OF GENERALIZED NUMERICAL RANGES
    AUYEUNG, YH
    POON, YT
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 27 (OCT) : 69 - 79
  • [6] Almost Hadamard matrices: The case of arbitrary exponents
    Banica, Teodor
    Nechita, Ion
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2367 - 2379
  • [7] Almost Hadamard Matrices: General Theory and Examples
    Banica, Teodor
    Nechita, Ion
    Zyczkowski, Karol
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2012, 19 (04)
  • [8] On Orthogonal Matrices Maximizing the 1-norm
    Banica, Teodor
    Collins, Benoit
    Schlenker, Jean-Marc
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (03) : 839 - 856
  • [9] Birkhoff's polytope and unistochastic matrices, N=3 and N=4
    Bengtsson, I
    Ericsson, Å
    Kus, M
    Tadej, W
    Zyczkowski, K
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) : 307 - 324
  • [10] Bhatia R., 1997, Matrix analysis