Lattices generated by subspaces in d-bounded distance-regular graphs

被引:11
|
作者
Guo, Jun [1 ]
Gao, Suogang [3 ]
Wang, Kaishun [2 ]
机构
[1] Langfang Teachers Coll, Math & Informat Coll, Langfang 065000, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Hebei Normal Univ, Math & Informat Coll, Shijiazhuang 050016, Peoples R China
关键词
distance-regular graph; subspaces; geometric lattice;
D O I
10.1016/j.disc.2007.09.046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Gamma denote a d-bounded distance-regular graph with diameter d >= 2. A regular strongly closed subgraph of Gamma is said to be a subspace of Gamma Define the empty set empty set to be the subspace with diameter -1 in Gamma. For 0 <= i <= i + s <= d - 1, let L(i, i + s) denote the set of all subspaces in Gamma with diameters i, i + 1, ..., i + s including Gamma and empty set. If we define the partial order on L(i, i + s) by ordinary inclusion (resp. reverse inclusion), then L(i, i + s) is a poset, denoted by L-O(i, i + s) (resp. L-R(i, i + s)). In the present paper we show that both L-O(i, i + s) and L-R (i, i + s) are atomic lattices, and classify their geometricity. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:5260 / 5264
页数:5
相关论文
共 50 条
  • [21] On Distance-Regular Graphs with lambda = 2
    Makhnev, Alexander A.
    Nirova, Marina S.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2014, 7 (02): : 204 - 210
  • [22] Nonexistence of a Class of Distance-regular Graphs
    Huang, Yu-pei
    Pan, Yeh-jong
    Weng, Chih-wen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02)
  • [23] Codes in Shilla Distance-Regular Graphs
    Belousov, I. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (Suppl 1) : S4 - S9
  • [24] On perturbations of almost distance-regular graphs
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2626 - 2638
  • [25] Codes in Shilla distance-regular graphs
    Belousov, Ivan NIkolaevich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02): : 34 - 39
  • [26] ON ISOMORPHISM BETWEEN DISTANCE-REGULAR GRAPHS
    Goryainov, S. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : 311 - 320
  • [27] Algebraic characterizations of distance-regular graphs
    Fiol, MA
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 111 - 129
  • [28] Codes in Shilla Distance-Regular Graphs
    I. N. Belousov
    Proceedings of the Steklov Institute of Mathematics, 2019, 305 : S4 - S9
  • [29] Distance-regular graphs of large diameter that are completely regular clique graphs
    Hiroshi Suzuki
    Journal of Algebraic Combinatorics, 2018, 48 : 369 - 404