Effect of electrode surface roughness on the electrical impedance of ionic polymer-metal composites

被引:32
|
作者
Aureli, Matteo [1 ]
Porfiri, Maurizio [1 ]
机构
[1] NYU, Polytech Inst, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
LINEAR ELECTROMECHANICAL MODEL; DOUBLE-LAYER; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; BENDING RESPONSE; TRANSDUCERS; ACTUATORS; CAPACITANCE; IPMC; GELS;
D O I
10.1088/0964-1726/21/10/105030
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, we study the effect of electrode surface roughness on the electrochemical response of ionic polymer-metal composites (IPMCs) subjected to a time-varying voltage input. We use the linearized Poisson-Nernst-Planck model to describe the dynamics of the electric potential and mobile counterions' concentration within the polymer. We derive a closed form solution of the three-dimensional boundary value problem by employing the method of matched asymptotic expansions. Specifically, the polymer region is decomposed into a bulk region, where mainly diffusive phenomena take place, and boundary layers in proximity of the polymer-electrode interfaces, where charge storage develops as a function of the electrode surface roughness. Leading order solutions are derived and matched on account of electric potential, counterions' concentration, and counterions' flux continuity. We find that IPMC charge storage is greatly enhanced by the increase in effective electrode surface area. On the other hand, bulk diffusion phenomena remain largely independent of the microscopic topography of the electrode. Thus, the hypothesis of rough electrodes is found to be very well suited in interpreting the anomalous values of IPMC capacitance which scales linearly with the electrode's actual surface area.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Robust control of ionic polymer-metal composites
    Kang, Sunhyuk
    Shin, Jongho
    Kim, Seong Jun
    Kim, H. Jin
    Kim, Yong Hyup
    SMART MATERIALS AND STRUCTURES, 2007, 16 (06) : 2457 - 2463
  • [22] Electrostatic actuation in ionic polymer-metal composites
    Boldini, Alain
    Jose, Kevin
    Cha, Youngsu
    Porfiri, Maurizio
    NANO-, BIO-, INFO-TECH SENSORS AND 3D SYSTEMS III, 2019, 10969
  • [23] Operation of ionic polymer-metal composites in water
    Yim, W
    Kim, KJ
    Paquette, JW
    Kim, D
    SMART STRUCTURES AND MATERIALS 2005: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES( EAPAD), 2005, 5759 : 22 - 33
  • [24] Ionic polymer-metal composites: Manufacturing techniques
    Kim, KJ
    Shahinpoor, M
    SMART STRUCTURES AND MATERIALS 2002: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD), 2002, 4695 : 210 - 219
  • [25] Molecular dynamics of ionic polymer-metal composites
    Truszkowska, A.
    Porfiri, M.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2208):
  • [26] Tailoring the actuation of ionic polymer-metal composites
    Nemat-Nasser, Sia
    Wu, Yongxian
    SMART MATERIALS AND STRUCTURES, 2006, 15 (04) : 909 - 923
  • [27] Ionic polymer-metal composites for underwater operation
    Kim, Kwang J.
    Yim, Woosoon
    Paquette, Jason W.
    Kim, Doyeon
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2007, 18 (02) : 123 - 131
  • [28] Effect of solvents on the chemical and physical properties of ionic polymer-metal composites
    Nemat-Nasser, Sia
    Zamani, Shahram
    Tor, Yitzhak
    Journal of Applied Physics, 2006, 99 (10):
  • [29] Effect of solvents on the chemical and physical properties of ionic polymer-metal composites
    Nemat-Nassera, Sia
    Zamani, Shahram
    Tor, Yitzhak
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (10)
  • [30] Effect of driving frequency on actuation characteristics of ionic polymer-metal composites
    Zhang, L.
    Yang, Y. W.
    SMART MATERIALS V, 2008, 7267