Effect of electrode surface roughness on the electrical impedance of ionic polymer-metal composites

被引:32
|
作者
Aureli, Matteo [1 ]
Porfiri, Maurizio [1 ]
机构
[1] NYU, Polytech Inst, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
LINEAR ELECTROMECHANICAL MODEL; DOUBLE-LAYER; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; BENDING RESPONSE; TRANSDUCERS; ACTUATORS; CAPACITANCE; IPMC; GELS;
D O I
10.1088/0964-1726/21/10/105030
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, we study the effect of electrode surface roughness on the electrochemical response of ionic polymer-metal composites (IPMCs) subjected to a time-varying voltage input. We use the linearized Poisson-Nernst-Planck model to describe the dynamics of the electric potential and mobile counterions' concentration within the polymer. We derive a closed form solution of the three-dimensional boundary value problem by employing the method of matched asymptotic expansions. Specifically, the polymer region is decomposed into a bulk region, where mainly diffusive phenomena take place, and boundary layers in proximity of the polymer-electrode interfaces, where charge storage develops as a function of the electrode surface roughness. Leading order solutions are derived and matched on account of electric potential, counterions' concentration, and counterions' flux continuity. We find that IPMC charge storage is greatly enhanced by the increase in effective electrode surface area. On the other hand, bulk diffusion phenomena remain largely independent of the microscopic topography of the electrode. Thus, the hypothesis of rough electrodes is found to be very well suited in interpreting the anomalous values of IPMC capacitance which scales linearly with the electrode's actual surface area.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] The mechanical properties of ionic polymer-metal composites
    Park, Il-Seok
    Kim, Sang-Mun
    Kim, Doyeon
    Kim, Kwang J.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2007, 2007, 6524
  • [12] Manufacture and Performance of Ionic Polymer-Metal Composites
    Yu, Min
    Shen, Hui
    Dai, Zhen-Dong
    JOURNAL OF BIONIC ENGINEERING, 2007, 4 (03) : 143 - 149
  • [13] Fuzzy control of ionic polymer-metal composites
    Khadivi, H.
    Aghazadeh, B. S.
    Lucas, C.
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 4198 - 4201
  • [14] Manufacture and performance of ionic polymer-metal composites
    Min Yu
    Hui Shen
    Zhen-dong Dai
    Journal of Bionic Engineering, 2007, 4 : 143 - 149
  • [15] Sensing capabilities of ionic polymer-metal composites
    Shahinpoor, M
    Kim, KJ
    Henderson, K
    Leo, D
    SMART STRUCTURES AND MATERIALS 2001: SENSORY PHENOMENA AND MEASUREMENT INSTRUMENTATION FOR SMART STRUCTURES AND MATERIALS, 2001, 4328 : 267 - 274
  • [16] Electromechanical response of ionic polymer-metal composites
    Nemat-Nasser, S
    Li, JY
    JOURNAL OF APPLIED PHYSICS, 2000, 87 (07) : 3321 - 3331
  • [17] ELECTROMECHANICAL COUPLING IN IONIC POLYMER-METAL COMPOSITES
    Davidson, Jacob D.
    Goulbourne, N. C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 9, 2012, : 723 - 735
  • [18] Micromechanics of actuation of ionic polymer-metal composites
    Nemat-Nasser, S., 1600, American Institute of Physics Inc. (92):
  • [19] Thermal management of Ionic Polymer-Metal Composites
    Vemuri, Srinivas
    Kim, Kwang J.
    Park, Il-Seok
    SMART STRUCTURES AND MATERIALS 2006: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD), 2006, 6168
  • [20] Ionic polymer-metal composites as multifunctional materials
    Shahinpoor, M
    Kim, KJ
    Leo, DJ
    POLYMER COMPOSITES, 2003, 24 (01) : 24 - 33