Effect of electrode surface roughness on the electrical impedance of ionic polymer-metal composites

被引:32
作者
Aureli, Matteo [1 ]
Porfiri, Maurizio [1 ]
机构
[1] NYU, Polytech Inst, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
LINEAR ELECTROMECHANICAL MODEL; DOUBLE-LAYER; ARTIFICIAL MUSCLES; BIOMIMETIC SENSORS; BENDING RESPONSE; TRANSDUCERS; ACTUATORS; CAPACITANCE; IPMC; GELS;
D O I
10.1088/0964-1726/21/10/105030
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, we study the effect of electrode surface roughness on the electrochemical response of ionic polymer-metal composites (IPMCs) subjected to a time-varying voltage input. We use the linearized Poisson-Nernst-Planck model to describe the dynamics of the electric potential and mobile counterions' concentration within the polymer. We derive a closed form solution of the three-dimensional boundary value problem by employing the method of matched asymptotic expansions. Specifically, the polymer region is decomposed into a bulk region, where mainly diffusive phenomena take place, and boundary layers in proximity of the polymer-electrode interfaces, where charge storage develops as a function of the electrode surface roughness. Leading order solutions are derived and matched on account of electric potential, counterions' concentration, and counterions' flux continuity. We find that IPMC charge storage is greatly enhanced by the increase in effective electrode surface area. On the other hand, bulk diffusion phenomena remain largely independent of the microscopic topography of the electrode. Thus, the hypothesis of rough electrodes is found to be very well suited in interpreting the anomalous values of IPMC capacitance which scales linearly with the electrode's actual surface area.
引用
收藏
页数:14
相关论文
共 62 条
[1]   High surface area electrodes in ionic polymer transducers: Numerical and experimental investigations of the electro-chemical behavior [J].
Akle, Barbar J. ;
Habchi, Wassim ;
Wallmersperger, Thomas ;
Akle, Etienne J. ;
Leo, Donald J. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[2]   Correlation of capacitance and actuation in ionomeric polymer transducers [J].
Akle, BJ ;
Leo, DJ ;
Hickner, MA ;
Mcgrath, JE .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (14) :3715-3724
[3]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[4]   A mechanical model of a non-uniform ionomeric polymer metal composite actuator [J].
Anton, Mart ;
Aabloo, Alvo ;
Punning, Andres ;
Kruusmaa, Maarja .
SMART MATERIALS AND STRUCTURES, 2008, 17 (02)
[5]  
Aureli M, 2012, CONTIN MECH IN PRESS
[6]   Free-Locomotion of Underwater Vehicles Actuated by Ionic Polymer Metal Composites [J].
Aureli, Matteo ;
Kopman, Vladislav ;
Porfiri, Maurizio .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2010, 15 (04) :603-614
[7]   Energy harvesting from base excitation of ionic polymer metal composites in fluid environments [J].
Aureli, Matteo ;
Prince, Chekema ;
Porfiri, Maurizio ;
Peterson, Sean D. .
SMART MATERIALS AND STRUCTURES, 2010, 19 (01)
[8]   On the capacitance-boost of ionic polymer metal composites due to electroless plating: Theory and experiments [J].
Aureli, Matteo ;
Lin, Weiyang ;
Porfiri, Maurizio .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (10)
[9]   Dynamic curvature sensing employing ionic-polymer-metal composite sensors [J].
Bahramzadeh, Yousef ;
Shahinpoor, Mohsen .
SMART MATERIALS AND STRUCTURES, 2011, 20 (09)
[10]   Measurements and macro models of ionomeric polymer-metal composites (IPMC) [J].
Bao, XQ ;
Bar-Cohen, Y ;
Lih, SS .
SMART STRUCTURES AND MATERIALS 2002: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD), 2002, 4695 :220-227