Topological Nodal Cooper Pairing in Doped Weyl Metals

被引:90
作者
Li, Yi [1 ,3 ]
Haldane, F. D. M. [2 ]
机构
[1] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
关键词
QUANTIZED HALL CONDUCTANCE; FERMI ARCS; SUPERCONDUCTIVITY; DISCOVERY; SEMIMETAL; MONOPOLE;
D O I
10.1103/PhysRevLett.120.067003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge q(p). The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j = vertical bar q(p)vertical bar, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge q(p) independent of concrete pairing mechanism.
引用
收藏
页数:6
相关论文
共 65 条
[1]   QUANTUM HALL-EFFECT AND THE RELATIVE INDEX FOR PROJECTIONS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2185-2188
[2]   HOMOTOPY AND QUANTIZATION IN CONDENSED MATTER PHYSICS [J].
AVRON, JE ;
SEILER, R ;
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (01) :51-53
[3]   Superconductivity in Weyl metals [J].
Bednik, G. ;
Zyuzin, A. A. ;
Burkov, A. A. .
PHYSICAL REVIEW B, 2015, 92 (03)
[4]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[5]   Quantum spin hall effect [J].
Bernevig, BA ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2006, 96 (10)
[6]  
Borisenko S., ARXIV150704847
[7]   Chiral anomaly and transport in Weyl metals [J].
Burkov, A. A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (11)
[8]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[9]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[10]   Superconductivity of doped Weyl semimetals: Finite-momentum pairing and electronic analog of the 3He-A phase [J].
Cho, Gil Young ;
Bardarson, Jens H. ;
Lu, Yuan-Ming ;
Moore, Joel E. .
PHYSICAL REVIEW B, 2012, 86 (21)