A transmission electron microscope and electron diffraction study of carbon nanodisks

被引:23
|
作者
Garberg, Torgunn [1 ]
Naess, Stine Nalum [1 ]
Helgesen, Geir [2 ]
Knudsen, Kenneth D. [1 ,2 ]
Kopstad, Gunnar [3 ]
Elgsaeter, Arnljot [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway
[2] Inst Energy Technol, Dept Phys, NO-2027 Kjeller, Norway
[3] St Olavs Hosp, Elect Microscope Lab, NO-7006 Trondheim, Norway
关键词
D O I
10.1016/j.carbon.2008.06.044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The pyrolytic Kvaerner carbon-black and hydrogen process yields industrial amounts of carbon nanodisks and nanocones. We here report on the first detailed transmission electron microscope and electron diffraction study of such carbon nanodisks. The carbon nanodisk rim thickness ranges from 5-6 nm to 60-70 nm, but most disks are 10-30 nm thick. In agreement with earlier reported results, we find that the disk diameters fall within the range from 500 to 4000 nm. Most nanodisks display six identical pairs of facets. The two associated interfacial angles are 0(1) = (22 +/- 1)degrees and 0(2) = 60.0 degrees-0(1). The nanodisk fracture surfaces reveal that the nanodisks are multi-layered structures. When the incident electron beam is perpendicular to the plane of the nanodisk we find that the diffraction patterns consist of concentric and continuous rings, on top of which there are discrete sets of diffraction spots. These spots display six-fold rotational symmetry and are consistent with the diffraction patterns of graphite layers. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1535 / 1543
页数:9
相关论文
共 50 条
  • [31] DIFFRACTION IN A SCANNING ELECTRON MICROSCOPE
    Rihacek, T.
    Mika, F.
    Matejka, M.
    Kratky, S.
    Muellerova, I.
    RECENT TRENDS IN CHARGED PARTICLE OPTICS AND SURFACE PHYSICS INSTRUMENTATION, 2016, : 56 - 57
  • [32] Fresnel diffraction in the electron microscope
    Boersch, H
    PHYSIKALISCHE ZEITSCHRIFT, 1943, 44 : 202 - 211
  • [33] Accurate and precise lattice parameters by selected-area electron diffraction in the transmission electron microscope
    Mugnaioli, Enrico
    Capitani, Giancarlo
    Nieto, Fernando
    Mellini, Marcello
    AMERICAN MINERALOGIST, 2009, 94 (5-6) : 793 - 800
  • [34] Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction
    Rauch, Edgar F.
    Portillo, Joaquin
    Nicolopoulos, Stavros
    Bultreys, Daniel
    Rouvimov, Sergei
    Moeck, Peter
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS, 2010, 225 (2-3): : 103 - 109
  • [35] A diffraction adapter for the electron microscope
    Hillier, J
    Baker, RF
    Zworykin, VK
    JOURNAL OF APPLIED PHYSICS, 1942, 13 (09) : 571 - 577
  • [36] Application of Scanning Precession Electron Diffraction in the Transmission Electron Microscope to the Characterization of Deformation in Wadsleyite and Ringwoodite
    Nzogang, Billy C.
    Thilliez, Simon
    Mussi, Alexandre
    Kawazoe, Takaaki
    Miyajima, Nobuyoshi
    Bouquerel, Jeremie
    Cordier, Patrick
    MINERALS, 2018, 8 (04)
  • [37] Study of the packing of double-walled carbon nanotubes into bundles by transmission electron microscopy and electron diffraction
    Colomer, JF
    Henrard, L
    Van Tendeloo, G
    Lucas, A
    Lambin, P
    JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (04) : 603 - 606
  • [39] Investigation of diesel ash particulate matter: A scanning electron microscope and transmission electron microscope study
    Liati, A.
    Eggenschwiler, P. Dimopoulos
    Gubler, E. Mueller
    Schreiber, D.
    Aguirre, M.
    ATMOSPHERIC ENVIRONMENT, 2012, 49 : 391 - 402