Observations of Magnetic Field Line Curvature and Its Role in the Space Plasma Turbulence

被引:20
作者
Huang, S. Y. [1 ]
Zhang, J. [1 ]
Sahraoui, F. [2 ]
Yuan, Z. G. [1 ]
Deng, X. H. [3 ]
Jiang, K. [1 ]
Xu, S. B. [1 ]
Wei, Y. Y. [1 ]
He, L. H. [1 ]
Zhang, Z. H. [1 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan, Peoples R China
[2] Univ Paris Saclay, Sorbonne Univ, Observ Paris Meudon, Lab Phys Plasmas,CNRS,Ecole Polytech, Palaiseau, France
[3] Nanchang Univ, Inst Space Sci & Technol, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Interplanetary turbulence; Interplanetary particle acceleration; Magnetic fields; High energy astrophysics; Space plasmas; SOLAR-WIND;
D O I
10.3847/2041-8213/aba263
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent numerical simulations of plasma turbulence showed that magnetic field line curvature plays a key role in particle energization. Based on in situ high-resolution data provided by the four Magnetospheric Multiscale spacecraft, we investigate the magnetic field line curvature and its role in the turbulent magnetosheath plasma. Our analysis reveals that the curvature exhibits two power-law distributions: the low curvature follows the scaling as kappa(0.33), and the large curvature has a scaling as kappa(-2.16). The curvature is anticorrelated with the magnitude of the magnetic field, but positively related to the normal force, the drift electric current, and the curvature drift acceleration term, indicating that intense energy dissipation due to the curvature drift occurs in the large curvature region. One typical example shows a localized increase of electron temperature that coincides with a peak in the curvature and the curvature drift acceleration term, which supports the role of the latter in local energization of electrons, in agreement with simulation results. These observations allow us to better understand the connection between magnetic field line curvature, energy dissipation, and particle energization in space and astrophysical plasmas.
引用
收藏
页数:8
相关论文
共 55 条
[1]   Spectra and anisotropy of magnetic fluctuations in the Earth's magnetosheath: Cluster observations [J].
Alexandrova, O. ;
Lacombe, C. ;
Mangeney, A. .
ANNALES GEOPHYSICAE, 2008, 26 (11) :3585-3596
[2]  
[Anonymous], 2004, Internet Mathematics, DOI DOI 10.1080/15427951.2004.10129088
[3]   In Situ Measurement of Curvature of Magnetic Field in Turbulent Space Plasmas: A Statistical Study [J].
Bandyopadhyay, Riddhi ;
Yang, Yan ;
Matthaeus, William H. ;
Chasapis, Alexandros ;
Parashar, Tulasi N. ;
Russell, Christopher T. ;
Strangeway, Robert J. ;
Torbert, Roy B. ;
Giles, Barbara L. ;
Gershman, Daniel J. ;
Pollock, Craig J. ;
Moore, Thomas E. ;
Burch, James L. .
ASTROPHYSICAL JOURNAL LETTERS, 2020, 893 (01)
[4]   FIRST-ORDER PARTICLE ACCELERATION IN MAGNETICALLY DRIVEN FLOWS [J].
Beresnyak, Andrey ;
Li, Hui .
ASTROPHYSICAL JOURNAL, 2016, 819 (02)
[5]   Geometry of particle paths in turbulent flows [J].
Braun, W. ;
De Lillo, F. ;
Eckhardt, B. .
JOURNAL OF TURBULENCE, 2006, 7 (62) :1-10
[6]   The Solar Wind as a Turbulence Laboratory [J].
Bruno, Roberto ;
Carbone, Vincenzo .
LIVING REVIEWS IN SOLAR PHYSICS, 2013, 10 (02) :7-+
[7]   PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVEN-WAVE TURBULENCE IN THE SOLAR WIND [J].
Chandran, Benjamin D. G. ;
Li, Bo ;
Rogers, Barrett N. ;
Quataert, Eliot ;
Germaschewski, Kai .
ASTROPHYSICAL JOURNAL, 2010, 720 (01) :503-515
[8]  
Chanteur G., 1998, ISSI Sci. Rep., P371
[9]   THIN CURRENT SHEETS AND ASSOCIATED ELECTRON HEATING IN TURBULENT SPACE PLASMA [J].
Chasapis, A. ;
Retino, A. ;
Sahraoui, F. ;
Vaivads, A. ;
Khotyaintsev, Yu. V. ;
Sundkvist, D. ;
Greco, A. ;
Sorriso-Valvo, L. ;
Canu, P. .
ASTROPHYSICAL JOURNAL LETTERS, 2015, 804 (01)
[10]  
Chen M, 2019, NAT COMMUN, V10, DOI [10.1038/s41467-018-07951-y, 10.1038/s41467-019-08435-3, 10.1038/s41467-019-09258-y]